
EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

On the Complexity of the Discrete Fréchet Distance under L1 and L∞
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Abstract

We study the decision tree complexity of the discrete
Fréchet distance (decision version) under the L1 and
L∞ metrics over Rd. While algorithms for the Eu-
clidean (L2) discrete Fréchet distance were studied
extensively, the problem in other metrics such as L1

and L∞ seems to be much less investigated.

For the L1 discrete Fréchet distance in Rd

we present a 2d-linear decision tree with depth
O(n log n), for any constant d. For the L∞ discrete
Fréchet distance in Rd we present a 2-linear decision
tree with depth O(n log n), for any constant d. We
hope that these near-linear depth decision trees will
motivate the study of the problem in these metrics
and, in particular, will lead to the development of im-
proved algorithms.

1 Introduction

The Fréchet distance is a measure of similarity be-
tween curves that takes into account the location and
ordering of the points along the curves. Therefore it is
often better than the well-known Hausdorff distance
as a metric for comparing parameterized shapes. This
measure was introduced by Fréchet in 1906 [6].

Eiter and Mannila [5] introduced the discrete
Fréchet distance, a variant also known as the coupling
distance. They showed that this distance provides a
good approximation for the Fréchet distance between
curves, and provided a quadratic dynamic program-
ming algorithm to compute it.

Since then many studies have been made about
the discrete problem in the Euclidean plane: Agar-
wal et al. [1] showed a subquadratic algorithm
with O(n2 log log n/ log n) runtime1, Buchin et al. [3]
showed an algebraic computation tree lower bound of
Ω(n log n), and Bringmann [2] recently showed that
there is no algorithm with runtime O(n2−Ω(1)) (also
known as “truly subquadratic time”), assuming the
Strong Exponential Time Hypothesis. These bounds
hold for computing the exact distance and for the de-
cision version of the problem.

While much work has been made on the Euclidean
discrete Fréchet distance, the problem in other met-
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1For the decision version, they showed a bound of
O(n2 log logn/ log2 n). Both are in the word RAM model.

rics, such as L1 and L∞ has been much less investi-
gated.
Buchin et al. [4] recently showed that the decision

tree complexity of the Euclidean discrete Fréchet dis-
tance in the plane is2 Õ(n4/3). This result is ob-
tained by using a range searching technique of Katz
and Sharir [9]. We will briefly review this result, and
argue that, for the problem under the L1 and L∞
metrics in Rd, the standard range searching approach
does not seem capable of giving us the results we aim
for, which we will establish using a different approach.
From now on, the term Lp discrete Fréchet distance

refers to the decision problem of determining whether
the discrete Fréchet distance with underlying norm
Lp is at most some parameter ε ≥ 0.
The contribution of this paper is given in the fol-

lowing theorems:

Theorem 1 Given two polygonal curves P , Q in
Rd with total complexity n (i.e., number of ver-
tices), there is a 2d-linear decision tree3 with depth
O(n logn) for the L1 discrete Fréchet distance be-
tween P and Q, for any constant d.

Theorem 2 Given two polygonal curves P , Q in Rd

with total complexity n, there is a 2-linear decision
tree with depth O(n log n) for the L∞ discrete Fréchet
distance between P and Q, for any constant d.

For Theorem 1 and Theorem 2, we generalize an
observation originated in Fredman’s 1976 work on the
decision tree complexity of (min,+)-matrix multipli-
cation [7], a fundamental problem in P, known for
being computationally equivalent to the APSP (all
pairs shortest paths) problem in directed graphs with
arbitrary real edge weights.
At the basis of Fredman’s technique is the trivial

(albeit ingenious) observation that a + b < c + d iff
a − c < d − b. This observation is often referred to
as Fredman’s trick. Fredman’s trick was also liberally
used by Grønlund and Pettie in their recent 3SUM
breakthrough [8].

2 Fréchet Distance

The Fréchet distance is often illustrated by a man and
a dog, each walking along a path (curve). The man

2The notation Õ(·) hides poly-logarithmic factors.
3A k-linear decision tree is one in which each branching is

based on a sign test of a linear expression with at most k terms.
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has the dog on a leash. Each of them may choose their
own speed and may stop but cannot walk backwards.
Then the Fréchet distance is the length of the shortest
leash that allows them to walk on their respective
curves from beginning to end.
More formally, following [5] we define a curve as a

continuous mapping f : [0, 1] → V , where (V, ρ) is a
metric space. Given two curves f : [0, 1] → V and
g : [0, 1] → V , their Fréchet distance is defined as

δF (f, g) = inf
α,β

max
t∈[0,1]

ρ(f(α(t)), g(β(t))),

where α and β are arbitrary continuous nondecreasing
functions from [0, 1] onto [0, 1].
When computing the Fréchet distance between ar-

bitrary curves, one typically approximates the curves
by polygonal curves. Eiter and Mannila [5] defined the
discrete Fréchet distance between polygonal curves
and showed it gives a good approximation to the
Fréchet distance between them.
A polygonal curve with n edges is a curve P :

[0, 1] → V , such that for each i ∈ {0, 1, . . . , n−1}, the
restriction of P to the interval

[
i
n ,

i+1
n

]
is affine. Since

the Fréchet distance is invariant under reparametriza-
tion, we can assume a polygonal curve P to be given
by the ordered list of its vertices, i.e., a sequence
P = (p0, . . . , pn).
Let P = (p0, . . . , pn) and Q = (q0, . . . , qm) be two

polygonal curves given by their ordered lists of ver-
tices. A coupling C = (c0, . . . , ck) between P and Q
is an ordered sequence of distinct pairs of vertices in
P , Q, such that c0 = (p0, q0), ck = (pn, qm) and cr =
(pi, qj) ⇒ cr+1 ∈ {(pi+1, qj), (pi, qj+1), (pi+1, qj+1)}.
The discrete Fréchet distance between P and Q is

δdF (P,Q) = min
C coupling

max
(pi,qj)∈C

ρ(pi, qj).

Eiter and Mannila [5] showed that

δF (P,Q) ≤ δdF (P,Q) ≤ δF (P,Q)+max{D(P ), D(Q)},

where D(P ) (resp., D(Q)) is the length of the longest
edge in P (resp., Q). Thus, if we add vertices to
the curves P , Q so that their edge lengths tend to
zero, their discrete Fréchet distance will tend to their
Fréchet distance.

Dynamic Programming Algorithm. Following [5],
we quickly review the standard quadratic dynamic
programming algorithm for the decision version of the
discrete Fréchet distance, in a metric space (V, ρ).
Given two point sequences A = (a1, . . . , an), B =

(b1, . . . , bn), and a parameter ε ≥ 0, the algorithm
creates an n× n Boolean matrix M , whose rows and
columns correspond to the points of A and B, respec-
tively. The algorithm fills the matrix with values 0/1
row by row. Every cell Mi,j in the matrix is filled by
1 iff both conditions hold:

1. At least one of the cells Mi−1,j , Mi,j−1, Mi−1,j−1

is filled with 1.

2. The distance ρ(ai, bj) is at most ε.

Otherwise, Mi,j is filled by 0. Intuitively, an entry
Mi,j is equal to 1 iff the pair (ai, bj) is reachable
from the starting placement (a1, b1) of the trip with
a “leash” of length ε. Otherwise, Mi,j is equal to 0.

The runtime of the algorithm is quadratic and the
number of input comparisons it does is also quadratic,
as there are potentially n2 distinct pairs of points
(ai, bj) to check whether ρ(ai, bj) ≤ ε.

3 Decision Tree for the Euclidean Plane

Buchin et al. [4] showed a quadratic algebraic deci-
sion tree4 with depth O(n4/3 log n) for the Euclidean
discrete Fréchet distance in the plane.

The decision tree is based on invoking the quadratic
dynamic programming algorithm following a prepro-
cessing stage. All the input comparisons in the dy-
namic programming algorithm are made by checking
if the distance of a point ai ∈ A from a point bj ∈ B
is less than the fixed given parameter ε. The prepro-
cessing stage will compute and store the answers for
these pairwise distance queries in a Boolean matrix

T
def
= (tij), where tij = 1 if ∥ai − bj∥2 ≤ ε, otherwise

tij = 0.

Given two point sequences A, B, with |A| = n,
|B| = m, and a parameter ε > 0, denote, for each
point a ∈ A, the circle of radius ε centered at a as ca.
A point b ∈ B lies inside a circle ca iff ∥a − b∥2 ≤ ε.
We obtain a set C of n congruent circles (all of radius
ε) and a set P (= B) of m points.

Katz and Sharir [9] showed that one can compute
a compact representation of the set of pairs of the
form (c, p), where p ∈ P , c ∈ C, and p lies inside
c, in O((m2/3n2/3 + m + n) log n) time and space.
This information suffices to construct T and invoke
the dynamic programming algorithm without using
further input comparisons.

Thus in total, when |A| = |B| = n, the number of
input comparisons is O(n4/3 log n).

4 Decision Trees for L1 and L∞ in Rd

Similar to the Euclidean case, range searching tech-
niques can also be used for the problem under other
metrics, for computing the pairwise distance queries
in the decision tree. However, as we now show, these
techniques, when routinely implemented, will give
much weaker results than those stated in Theorem 1
and Theorem 2.

4Namely, each branching is a sign test of a quadratic expres-
sion.
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The simpler case is for the L∞ metric, for which
the unit ball in Rd has the form of a d-dimensional
hypercube. One can compute a d-dimensional range
tree data structure for the points of A, in time
O(n logd−1 n). For each point b = (b1, . . . , bd) ∈ B,
denote by cb its corresponding d-sphere (under L∞)
of radius ε, centered at b. Clearly, cb = [x1, y1] ×
[x2, y2]× · · · × [xd, yd] is a d-dimensional hypercube.
For each b ∈ B, we query the range tree with its

corresponding hypercube cb. This will give us all the
points of A that lie in cb. Since for each interval of
cb, the query takes O(log n) time, the query for cb
takes O(logd n) time. Using fractional cascading, this
can be improved to O(logd−1 n) time. In total, this
approach leads to a 2-linear decision tree of depth
O(n logd−1 n).
For the L1 metric, a similar approach will lead to a

much weaker result. The unit ball under the L1 metric
forms a d-dimensional cross-polytope with 2d facets.
Thus, querying such a ball will require 2d queries, each
performing O(log n) 2d-linear comparisons, resulting

in a 2d-linear decision tree of depth O(n log2
d

n).
The range searching data structure is appropriate

also when the queries are not known in advance. Us-
ing Fredman’s trick, we leverage the fact that in our
case all the queries are known in advance, to obtain
better decision trees.

The L1 discrete Fréchet distance. We start by pre-
senting a 4-linear decision tree with depth O(n log n)
for the L1 discrete Fréchet distance in R2, and then
we explain how to modify it to obtain a 2d-linear de-
cision tree with depth O(n log n) for the problem in
Rd. This will prove Theorem 1.
The following property will allow us to apply Fred-

man’s trick on pairwise distance queries under the L1

norm.
For any real numbers x, y, z ∈ R, |x| + |y| ≤ z if

and only if all the following inequalities hold.

x+ y ≤ z, x− y ≤ z,

−x+ y ≤ z, −x− y ≤ z.

Since the L1 distance between a point ai = (xi, yi)
and a point bj = (xj , yj) is defined by

∥ai − bj∥1 = |xi − xj |+ |yi − yj | ,

the property above leads to the following observation.

Observation 1 For ai = (xi, yi), bj = (xj , yj) ∈ R2,
∥ai − bj∥1 ≤ ε if and only if all the following inequal-
ities hold.

xi + yi ≤ xj + yj + ε,

xi − yi ≤ xj − yj + ε,

yi − xi ≤ yj − xj + ε,

−xi − yi ≤ −xj − yj + ε.

This observation is a sort of generalization of Fred-
man’s trick for the L1 distance between two points in
the plane.
Recall that we are given two point sequences in the

plane A = (a1, . . . , an), B = (b1, . . . , bn), and a dis-
tance parameter ε. The following algorithm deter-
mines whether δdF (A,B) ≤ ε.

1. Sort D1
def
= {xi + yi, x

′
j + y′j + ε |

ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B}.

2. Sort D2
def
= {xi − yi, x

′
j − y′j + ε |

ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B}.

3. Sort D3
def
= {yi − xi, y

′
j − x′

j + ε |
ai = (xi, yi) ∈ A, bj = (x′

j , y
′
j) ∈ B}.

4. Sort D4
def
= {−xi − yi, −x′

j − y′j + ε |
ai = (xi, yi) ∈ A, bj = (x′

j , y
′
j) ∈ B}.

5. Using Observation 1, given the sorted orders on
D1, . . . , D4, construct the n× n Boolean matrix

T
def
= (tij), where tij =

{
1 if ∥ai − bj∥1 ≤ ε

0 otherwise.

6. Invoke the dynamic programming algorithm us-
ing T for the distance queries.

Steps 1–4 require O(n log n) comparisons. Using
Observation 1, Step 5 requires no comparisons (on
the raw data) at all, given the sorted orders on
D1, . . . , D4. Specifically, to test whether ∥ai − bj∥1 ≤
ε, we test the four corresponding inequalities from
Observation 1. Each inequality test is resolved by
the sorted orders on D1, . . . , D4. Step 6 requires no
comparisons, given the matrix T from Step 5. All
comparisons are sign tests of 4-linear expressions. In
total, the number of comparisons is O(n log n). The
algorithm can be implemented to run in O(n2) time,
using only O(n log n) input comparisons.
The algorithm can easily be extended to Rd, by us-

ing additional sorting steps (similar to steps 1–4), and
lead to a 2d-linear decision tree with depth O(n log n).
A generalization of Observation 1 to points ai =
(xi1 , . . . , xid), bj = (xj1 , . . . , xjd) in Rd leads to 2d

inequalities, each defined by a vector δ ∈ {−1, 1}d,
and has the form

d∑
k=1

δkxik ≤
d∑

k=1

δkxjk + ε.

Each such inequality is a 2d-linear expression. Thus,
for the same problem in Rd, the algorithm has 2d

sorting steps, and all comparisons are sign tests of
2d-linear expressions. This proves Theorem 1. �
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The L∞ discrete Fréchet distance. The previous
algorithm can easily be modified (and simplified) for
the L∞ norm. As before, we first consider the prob-
lem in R2, and later extend it to Rd. The L∞ dis-
tance between a point ai = (xi, yi) ∈ R2 and a
point bj = (xj , yj) ∈ R2 is defined by ∥ai − bj∥∞ =
max{|xi − xj | , |yi − yj |}. Hence,

∥ai − bj∥∞ ≤ ε ⇔ (|xi − xj | ≤ ε) ∧ (|yi − yj | ≤ ε) .

Thus we obtain the following observation.

Observation 2 For ai = (xi, yi), bj = (xj , yj) ∈ R2,
∥ai− bj∥∞ ≤ ε if and only if all the following inequal-
ities hold.

xi ≤ xj + ε, xj ≤ xi + ε,

yi ≤ yj + ε, yj ≤ yi + ε.

This leads to the following variant of the previous
algorithm, where the sets to be sorted are:

D1
def
= {xi, x

′
j + ε | ai = (xi, yi) ∈ A, bj = (x′

j , y
′
j) ∈ B},

D2
def
= {x′

j , xi + ε | ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B},

D3
def
= {yi, y′j + ε | ai = (xi, yi) ∈ A, bj = (x′

j , y
′
j) ∈ B},

D4
def
= {y′j , y′i + ε | ai = (xi, yi) ∈ A, bj = (x′

j , y
′
j) ∈ B}.

Using Observation 2, given the sorted orders on
D1, . . . , D4, one can construct the Boolean matrix

T
def
= (tij), where tij =

{
1 if ∥ai − bj∥∞ ≤ ε

0 otherwise,

with no further comparisons. Now, one can invoke
the dynamic programming algorithm and use T for
the distance queries.

Similarly to the L1 norm, the above algorithm uses
O(n log n) input comparisons and can be implemented
to run in O(n2) time. Each comparison is a sign test
of a 2-linear expression.

Following a generalization of Observation 2 to
points in Rd, the algorithm can be extended to Rd by
adding additional sorting steps. We have 2d sorting
steps for the problem over Rd, two for each coordinate.
Each comparison will still be a 2-linear expression, in-
dependent of d. Thus in total we obtain a 2-linear
decision tree with depth O(n log n) for the problem in
Rd, for any constant d. This proves Theorem 2. �

5 Discussion

An intriguing aspect of the presented results is the
“large” gap we obtain between the nonuniform and
the known uniform complexity of the problems.

For some archetypal problems in P, a gap of
√
n

was shown5, starting with the (min,+)-matrix mul-
tiplication [7], to the recent 3SUM and Zero Triangle
results [8]. For the Euclidean discrete Fréchet dis-
tance in the plane, a gap of n2/3 was noted above.
The quadratic time algorithm of Eiter and Man-

nila [5] can compute the discrete Fréchet distance in
any metric space. For the L1 and L∞ versions, our
O(n logn) decision trees give a gap of n. We hope that
this “large” gap will motivate the study of the prob-
lem in these metrics. In particular, can one obtain a
truly subquadratic algorithm for these problems? or
on the other hand, does a similar result to the con-
ditional lower bound of Bringmann [2] (for the Eu-
clidean discrete Fréchet distance) can be obtained for
the problem under metrics L1 and L∞?
Another open question is whether our decision trees

are optimal. The Ω(n log n) lower bound proof in [3]
cannot be applied to the L1 or L∞ versions, as it
exploits the strict convexity of the Euclidean plane.
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