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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to physical
attacks, such as an Electromagnetic Pulse (EMP) attack. Such real-
world events happen at specific geographical locations and disrupt
specific parts of the network. Therefore, the geographical layout of
the network determines the impact of such events on the network’s
connectivity. Recent works focused on assessing the vulnerability
of a deterministic (geographical) network to such events. Here,
we focus on assessing the vulnerability of (geographical) random
networks to such disasters and identifying the most vulnerable
parts of a network where only partial (probabilistic) information
about its geographical layout is given. We consider stochastic
models in which nodes and links are probabilistically distributed
geographically on a plane, and model the disaster event as a
circular cut that destroys any node or link within or intersecting
the circle. We develop algorithms for assessing the damage of such
attacks and determining which attack locations have the most
disruptive impact on the network. Our novel approach allows
identifying locations which require additional protection efforts
(e.g., equipment shielding). Overall, the paper demonstrates that
using stochastic modeling and geometric probability techniques
can significantly contribute to our understanding of network
survivability and resilience.

Index Terms—Network survivability, physical attacks, geo-
graphic networks, random networks, fiber-optic, network relia-
bility, large scale failures, Electromagnetic Pulse (EMP).

I. INTRODUCTION

In the last decades, telecommunication networks have been
increasingly crucial for information distribution, control of in-
frastructure and technological services, as well as for economies
in general. Large scale malfunctions and failures in these
networks, due to natural disasters, operator errors or malicious
attacks pose a considerable threat to the well being and health
of individuals all over the industrialized world. It is therefore
of considerable importance to investigate the robustness and
vulnerabilities of such networks, and to find methods for
improving their resilience and stability.

This emerging field of geographically correlated failures
has started gaining attention only recently [2], [13]. However,
unlike most of the recent work in this field, we focus on
random networks. We consider a stochastic model in which
nodes and links are probabilistically distributed geographically
on a plane. The motivation behind it is to examine the reliability
of a network where we possess only partial (probabilistic)
information about its geographical layout. For example, a
geographically hidden network where the adversary possesses

Fig. 1. Color map of the the USA population density in logarithmic scale.
Data is taken from [7].

only partial information about the network topology or no
knowledge at all. For example, in densely populated areas the
probability for stations (nodes) to exist is high compared to
desolated areas, in which it is less likely to find many stations.
Similarly, the probability for existence of a fiber (link) between
two stations can be modeled as a function of the distance
between the stations, the population density in the station’s
regions, and possibly other parameters relating to the endpoints
and geography. Another example is the case where an adversary
possess a ‘noisy’ map of the network’s geographical layout.

The ability to probabilistically model a network using in-
formation such as demography, topography, economy, can be
used to produce an input to our algorithm for determining
a location where an attack will cause maximum expected
disruptive damage in terms of capacity or connectivity. This is
important in assessing the expected damage from an attack by
an adversary with limited knowledge. In order to design a more
robust and well defended system one can consider the resilience
of the actual network topology compared to the appropriate
random model, and also consider the effect of hiding the actual
physical location of fibers on the attack strategy and expected
damage by an adversary.

II. RELATED WORK

The issue of network survivability and resilience has been
extensively studied in the past (e.g., [4], [6], [8]–[10], [16], [19],
[20] and references therein). Most of these works concentrated
on network topology, but did not consider the physical location
of nodes and links.
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The subject of random network models has been studied
extensively. See, e.g., [3]. Some of the studied models also
incorporated geometry into the random model. See, e.g., [5].
The properties of the real Internet topology and geometry have
been studied experimentally in [14], [15], [18].

Recently, the subject of geographically correlated failures has
been proposed [13], in which the effect of attacks or disasters
span an extensive geographic area, affecting all network equip-
ment within this area. In [13] an algorithm was devised for
studying the effect of geographically correlated failures on a
deterministic network, and a case study was presented about
a fiber backbone in the USA. In [12] random geographical
failures (cuts) to deterministic networks were studied, and in
[11] the effect of cuts on flows has been studied.

Major contribution has been made recently in [1], [2], where
runtime improvements and extensions were given, allowing
for probabilistic failures (e.g., with Gaussian effect), light-path
investigation and simultaneous attacks scenarios.

While various failure models were recently studied exten-
sively in these works, they assume that the network’s layout
is deterministic. In this paper, we focus on spatial random
networks. This applies to both the case where the network
is derived from a random model, or to the case where the
physical topology of the network is unknown to the attacker,
who only possesses some statistical information such as the
population density or the probability of having link between
various locations. To the best of our knowledge, this paper
is the first to study such geographical network failures in the
context of spatial random networks.

III. PROBLEM STATEMENT

We study the model consisting of a random network im-
mersed within a bounded convex set B ⊆ R2. We consider
nodes as stations and links as cables that connect stations.
Stations are represented through their coordinates in the plane
R2, and links are represented by straight line segments defined
by their end-points. The network is formed by a stochastic
process in which the location of stations is determined by a
stochastic point process. The distribution of the Poisson process
is determined by the intensity function f(u) which represents
the mean density of nodes in the neighborhood of u. The
number of nodes in a Borel set B follows a Poisson distribution
with the parameter f(B), i.e., the integral over the intensity of
all points in the Borel set. Furthermore, the number of nodes in
disjoint Borel sets are independent. An introduction to Poisson
Point Processes can be found in [17].

In our model we consider a network N = ⟨p ∼ Π(f), link ∼
ω, c ∼ H,Rec⟩ where nodes are distributed in the rectangle
Rec = [a, b] × [c, d] through a Spatial Non-Homogeneous
Poisson Point Process Π(f) where f(p) is the intensity function
of the Poisson Point Process Π at the point p = (x, y). Let
ω(pi, pj) be the probability for the event of existence of a link
between two nodes located at pi and pj in Rec. H(c, pi, pj)
is the cumulative distribution function of the link capacity,
Cij , between two connected nodes at pi and pj , i.e. P (Cij ≤
c) = H(c, pi, pj) where pi and pj are the locations of nodes

i and j, respectively. It is reasonable to assume that ω(pi, pj)
and H(c, pi, pj) can be computed easily as a function of the
distance from pi to pj and that the possible capacity between
them is bounded (denoted by max{capacity}). We assume the
following: the intensity function f of the Poisson Point Process,
ω, and the probability density function h (the derivative of
H), are functions of constant description complexity. They are
continuously differentiable and Riemann-integrable over Rec,
which also implies that our probability functions are of bounded
variation over Rec, as their derivatives receive a maximum over
the compact set Rec ⊆ R2.

We note that Poisson process is memoryless and independent.
In particular, if we look on a specific region with high intensity
values then it is likely to have multiple stations in this region.
There are various point process models that can be used
to model a random network, for example, Matérn hard-core
process and Gibbs point processes class [17], which can be
used where it is wanted that a random point is less likely
to occur at the location u if there are many points in the
neighborhood of u or for the hard-core process where a point
u is either “permitted” or “not permitted” depending whether
it satisfies the hard-core requirement (e.g. far enough from all
other points). Methods similar to those presented here for the
Poisson process can be applied to these models, as well.

Definition 1 (Circular Cut): A circular cut D, is a circle
determined by its center point p = (xk, yk) and by it’s radius r,
where p ∈ Recr = [a+r, b−r]× [c+r, d−r]. 1 We sometimes
denote the cut as cut(p, r) and Recr as Rec (depending on the
context). Such a cut removes all nodes and links that intersect
it (including the interior of the circle).

Our main goal is to find an attack location (or a set of
locations) which has the highest expected disruptive impact on
the network. We consider a fiber to be destroyed (failed fiber)
if it intersects the cut, namely, the attack’s influence region.
The impact is measured by the total capacity of failed fibers,
or by the total number of failed fibers, which is equivalent to
the previous measure when all fibers have capacity 1.

IV. DAMAGE EVALUATION SCHEME

In order to find the attacks that have the highest expected
impact on the network, we develop a scheme to evaluate the
total expected capacity of the intersected links (TEC) of the
network with a circular attack in a specific location. First, we
present the general idea behind it. We divide the intersection of
a cut D (denoted also by cut(p, r)) with a graph’s edges into
3 independent types:

• α − link, is the case where the entire edge is inside
cut(p, r), which means both endpoints of the edge are
inside cut(p, r) (see illustration in Fig. 2).

• β − link, is the case where one endpoint of the edge
is inside cut(p, r) and the other endpoint is outside of
cut(p, r) (see illustration in Fig. 3).

• γ − link, is the case where both endpoints are outside
of cut(p, r) and the edge which connects the endpoints
intersects cut(p, r) (see illustration in Fig. 4).

1For simplicity we assume that D can only appear in whole within Rec.
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Fig. 4. γ-link edge.

Note that any intersected link with cut D = cut(p, r) belongs
to exactly one of the above types. For σ ∈ {α, β, γ}, let Xσ

be the total capacity of all the intersected σ− link type edges
with cut D, namely the damage determined by σ−links. Thus,
it holds that the expected capacity of the intersected links of
types α, β and γ is determined by:

E[Xα] =
1

2

∫∫
D

∫∫
D

f(u)f(v)g(u, v)dudv (1)

E[Xβ ] =

∫∫
Rec−D

∫∫
D

f(u)f(v)g(u, v)dudv (2)

E[Xγ ] =
1

2

∫∫
Rec−D

∫∫
Rec−D

f(u)f(v)g(u, v)I(u, v,D)dudv (3)

where g(u, v) = ω(u, v)
∫max{capacity}
0

h(c, u, v)c dc is the ex-
pected capacity between two nodes at points u and v (deter-
mined by the probability of having a link between them, times
the expected capacity of this link). I(u, v,D) is the indicator
function, giving one if the segment (u, v) intersects the circle
D and zero otherwise.

Denote by X = Xα+Xβ+Xγ , the total damage determined
by all the intersected links with cut D. Due to the linearity
of expectation, we get that the total expected capacity of the
intersected links (TEC) is E[X] = E[Xα] + E[Xβ ] + E[Xγ ].
Hence, it is sufficient to evaluate the expected damage caused
by each of the 3 types of the intersected links separately.
Summing them all together is the total expected damage caused
by D = cut(p, r).

A. Evaluating the Damage of Circular Cut Algorithm

We present an approximation algorithm EDCC (see pseudo-
code in Algorithm 1) for evaluating the total expected ca-
pacity of the intersected links (TEC) of the network with a
circular attack (cut) D in a specific location. Later, we use
this algorithm to find attack locations with the (approximately)
highest expected impact on the network. We give two different
approximation analyses for algorithm EDCC output. One is
an additive approximation, and one is multiplicative. Although
additive approximations in general are better than multiplica-
tive, our analysis of the additive approximation depends on
the maximum value of the functions f(·) and g(·, ·) over Rec,
where g(·, ·) stands for the expected capacity between two
points u, v ∈ Rec. While the maximum of f(·) and g(·, ·)
over Rec can be high and affect the running time of the
algorithm, for practical uses in “real-world” scenarios, it is
usually low enough to make the running time reasonable. The

multiplicative analysis which does not depend on the maximum
of f(·) and g(·, ·) over Rec, depends on the variation bound of
f(pi)f(pj)g(pi, pj), namely a constant M which is an upper
bound for the derivative of f(·)f(·)g(·, ·) over Rec. Define an
additive ϵ-approximation to the TEC as a quantity C̃ satisfying
C − ϵ ≤ C̃ ≤ C + ϵ for ϵ > 0, where C is the actual expected
capacity intersecting the cut. Similarly, define a multiplicative
ϵ, ε-approximation to the cut capacity as a quantity C̃ satisfying
(1− ε)C − ϵ ≤ C̃ ≤ (1 + ε)C + ϵ.

The algorithm uses numerical integration based on the
discretization, where Rec is divided into a grid of squares
with edge length ∆ (we refer to ∆ as the “grid con-
stant”). The different approximations are pronounced in the
ComputeGrid(Rec, r, ϵ) function in the algorithm, which de-
termines the grid of constant ∆. Let Grid be the set of these
squares center-points. The algorithm evaluates the integrals
numerically, using the points in Grid. Intuitively: the denser is
the grid, the more accurate the results, at the price of requiring
additional time to compute. Later, we examine the relation
between the accuracy parameter ϵ and the grid constant ∆, this
relation determines the implementation of ComputeGrid() and
the running time of our algorithm.

When computing the expectation of the γ-links damage
caused by a cut D, we use the following lemma:

Lemma 1: For every node u ∈ Rec \ D, the set Ku (see
lines 11-12 in Algorithm 1 and illustration in Fig. 5) satisfies:
for every v ∈ Ku, (u, v) intersects D, and for every w ∈
Rec \ (Ku ∪D), (u,w) does not intersect with D.
Thus, we run over every point u in Grid which is outside the
cut, and compute all possible γ-link damage emanating from
u, using procedure evaluateGamma(u,D,Grid). Summing
them all together and dividing by 2, due to double-counting,
we get the total expected γ-link damage.

B. Numerical Accuracy and Running Time Analysis

We give in this section two theorems regarding the accuracy
of the algorithm. The first theorem gives an additive bound on
the error in the calculation of the damage caused by a cut of
radius r using numerical integration with grid constant ∆. We
restrict our results to the case where ∆ < r/2, as otherwise
the approximation is too crude to consider. The proof requires
some technical lemmas, given in the Appendix.

Theorem 1: For a grid of constant ∆, a point p ∈ Rec, and
the result C̃ for cut(p, r) obtained by Algorithm 1, it holds
that C − ϵ ≤ C̃ ≤ C + ϵ, where C is the actual TEC value for
cut(p, r), and ϵ = c0 ·

√
∆ for some constant c0 that depends on

the maximum values of f(·) and g(·, ·), their variation bound,
the sides of Rec and the radius r.
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Algorithm 1 EvaluateDamageCircularCut (EDCC): Approxi-
mation algorithm for evaluating the damage of a circular cut.

1: capacity procedure EDCC(N, cut(p, r), ϵ)
2: D ← Circle(cut(p, r)) //D is a representation of the circular cut.
3: Grid← ComputeGrid(Rec, r, ϵ)
4: for every u, v ∈ Grid do
5: // Compute the expected capacity between two points u and v:

g(u, v)← ω(u, v)
∫max{capacity}
0

h(c, u, v)c dc
6: The following steps are calculated over Grid:
7: E[Xα]← 1

2

∫∫
D

∫∫
D

f(u)f(v)g(u, v)dudv

8: E[Xβ ]←
∫∫

Rec−D

∫∫
D

f(u)f(v)g(u, v)dudv

9: E[Xγ ]← 1
2

∫∫
Rec−D

f(u)evaluateGamma(u,D,Grid)du

10: return E[Xα] + E[Xβ ] + E[Xγ ]
Procedure evaluateGamma(u,D,Grid)
11: Create two tangents t1, t2 to D going out from u.
12: Denote by Ku the set of points which is bounded by t1, t2, D

and the boundary of the rectangle Rec (see Fig. 5).
13: return

∫∫
Ku

f(v)g(u, v)dv

Proof: By standard arguments on numerical integration the
error in calculating the integral over any region is bounded
by M∆ times the area of integration, where M is the bound
on the variation rate for the product f(·)f(·)g(·, ·) over Rec.
The integration here is performed over pairs of points that are
bounded inside the area of Rec (denoted by |Rec|). Thus, the
error is bounded by M∆|Rec|2.

Additionally, the cumulative error value |C − C̃| consists of
the following:

Any point in a grid square is within a distance of ∆/
√
2 < ∆

of the grid point (square center). The additional difference in
the integral over α and β links is bounded by the integral over
the area of inaccuracy around the circular cut (grid squares
which are partially in the cut and partially outside). This is
bounded by an annulus of radii [r−∆/

√
2, r+∆/

√
2] around

the center of the circular cut of area 2
√
2πr∆. Thus, we obtain

an error which is bounded by 2
√
2πr∆T |Rec| where T =

maxu,v∈Rec{f(u)f(v)g(u, v)}, which is the maximum value
the function takes over all points in the rectangle.

The additional error in the calculation of γ-links is ob-
tained in two terms, one term is determined in the procedure
evaluateGammma(u,D,Grid) where the area of inaccuracy
is around Ku (grid squares which are partially in Ku and
partially outside). This area is bounded by

√
2L∆ where L

is the diagonal length of Rec. This gives an error term which
is bounded by

√
2L∆T |Rec|.

The second error term is obtained using Lemma 3 which
implies that for any point u in a grid square, the area of
symmetric difference between Ku and Kv for the grid point
(square center) v nearest to u is bounded by a

√
∆, where

a ≤ const · L2

√
r

(see Appendix). Thus, we obtain an error

bounded by a|Rec|T
√
∆.

Taking into account the errors in this numerical integration
from all terms above, one obtains that the leading term in the

pu

Rec(a, d) (b, d)

(a, c) (b, c)

t1

t2

Ku

Fig. 5. The area Ku of the shadow by the circular cut from the point u.

error when ∆ → 0 is |C − C̃| ≤ constL2|Rec|T
√

∆

r
. Thus,

the accuracy depends on
√
∆, as well as on the sides of the

rectangle, the radius of the cut, the maximum values of the
functions f(·), g(·, ·) and their variation bound over Rec.
Using Theorem 1, the function ComputeGrid(Rec, r, ϵ) can
be implemented by selecting the value of ∆ guaranteeing that
the additive error will be at most ϵ.

Since the constant depends on the maximum value of the
functions f and g, which may be undesirable in case these
maxima are high, we have the following theorem, giving a com-
bined additive and multiplicative accuracy with the constants
independent of the maxima of f and g. Using the following
Theorem 2, the function ComputeGrid(Rec, r, ϵ) can be mod-
ified to a new function ComputeGrid(Rec, r, ϵ, ε) which can
be implemented by selecting the value of ∆ guaranteeing that
the additive error will be at most ϵ and the multiplicative error
will be at most ε.

Theorem 2: For a grid of constant ∆, a point p ∈ Rec, and
the result C̃ for cut(p, r) obtained by Algorithm 1, it holds
that (1− ε)C − ϵ ≤ C̃ ≤ (1 + ε)C + ϵ, where C is the actual
TEC value for cut(p, r), for ϵ = c1 ·

√
∆, ε = c2 ·

√
∆, such

that c1 and c2 depend only on Rec, r, and M the bound on the
variation of f(·)f(·)g(·, ·), but are independent of the maximum
values of f and g.

Proof: From the proof of Theorem 1, the standard error in
the numerical integration over the grid depends only on the grid
constant ∆, the radius of the cut r, and the bounded variation
rate M of the integrated function.

Now denote the integrated function by f̃(u), and write it
in polar coordinates relative to the center of the cut. Let
R(θ) denote the boundary of the integrated area and R′(θ)
denote the boundary as approximated by the algorithm. We
have for each θ, |R(θ)−R′(θ)| ≤ cL

√
∆ for some constant c.

From the bounded variation it follows that
∫∫

dθrdrf̃(r, θ) ≥∫∫ R(θ)

0
dθrdrmax{0, f̃(R(θ), θ)−M(R(θ)−r)}. This integral

evaluates to
∫
dθf̃(R(θ), θ)R2(θ)/2 − O(MR3(θ)), whereas

the error term is at most

ERR ≤ cL2
√
∆

∫
dθf̃(R(θ), θ) +O(M

√
∆),

where the second summand depends only on L and M . Thus
the relative error is bounded by

ERR∫∫
dθrdrf̃(r, θ) + aM

≤ b
√
∆,
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where a and b are constants independent of the maximum value
of f̃ .

The algorithm is based on running over pairs of points in the
grid, and thus

Theorem 3: For a given additive accuracy parameter ϵ > 0,
the ϵ-factor2 for the running time of Algorithm 1 is O(ϵ−8).
Similarly, for a multiplicative accuracy parameter ε > 0 an
additional term for the running time has ε-factor of O(ε−8).

Proof: The number of grid points in the rectangle is
|Rec|/∆2. The algorithm performs integration over pairs of
points in the grid. Thus the running time is at most proportional
to the number of pairs of grid points, which is O(|Rec|2/∆4).
From Theorem 1, ϵ = O(

√
∆) and thus we obtain a factor of

O(ϵ−8). Similarly, for the combined ϵ-additive ε-multiplicative
approximation, it can be derived from Theorem 2 that ε =
O(

√
∆), giving the additional term.

V. FIND SENSITIVE LOCATIONS SCHEME

Using Algorithm 1 (EDCC) one can approximate the TEC
for an attack at every point, and in particular, find an approx-
imated worst case attack (one with the highest TEC value) or
the expected damage by a random attack (where its location is
probabilistically distributed).

To achieve this goal, we divide Rec into squares, forming
a grid. Then, we execute EDCC algorithm from the previous
section for every grid point (squares center-points) such that it
is a center-point of a cut of radius r. This leads to a “network
sensitivity map”, i.e., for every point we have an approximation
of the damage by a possible attack in that point.

The approximated worst cut is given by taking the point with
the highest TEC value among all the centers of grid squares.
The actual worst case cut can be potentially located at any
point within the grid squares whose centers’ calculated TECs
are approximated by the EDCC algorithm. To guarantee an
attack location with TEC of at least C − ϵ where C is the
TEC of the actual worst cut and an additive accuracy parameter
ϵ > 0, we provide the following algorithm:

1) For a cut of radius r, and accuracy parameter ϵ > 0,
apply the function computeGrid(Rec, r, ϵ/2) to find
∆ > 0 such that the accuracy of Algorithm 1, given
by Theorem 1 is ϵ/2.

2) Form a grid of constant ∆ (found in step 1)
from Rec. For every grid point p, apply procedure
EDCC(N, cut(p, r), ϵ/2). The grid point with the high-
est calculated TEC is the center of the approximated
worst cut.

In the following theorems we prove the correctness of the
above algorithm and refer its running time.

Theorem 4: For an accuracy parameter ϵ > 0, the attack
with the highest TEC value C̃ found by the above algorithm
satisfies C̃ ≥ C − ϵ, where C is the TEC value for the actual
worst cut.

2The running time depends also on the network parameters. Computational
complexity analysis which depends on the network parameters can be derived
from the theorems and the Appendix of the paper.

Proof: By Theorem 1 for every ϵ′ > 0 one can find a
grid constant ∆ > 0 such that for any point p ∈ Rec the TEC
value of cut(p, r) obtained by algorithm EDCC is within ϵ′-
accuracy (additive) from the actual TEC value of cut(p, r).

For any cut located at a grid point, take a cut located at some
other point within the grid square (within a distance d < ∆
from the center of the square). The difference between the TEC
for these two cases is exactly the same as in the symmetric case,
where the functions f , g and the grid, are shifted a distance d
in the other direction. Thus, using similar arguments as in the
proof of Theorem 1, we obtain that the difference is at most
ϵ′. Taking ϵ′ = ϵ/2 completes the proof.

Theorem 5: For an additive accuracy parameter ϵ > 0, the
ϵ-factor on the running time of the above algorithm is O(ϵ−12).

Proof: The algorithm samples a circular cut of radius r
at the center point p of each grid square. For each such cut,
the algorithm executes EDCC(N, cut(p, r), ϵ/2). The grid has
O(|Rec|/∆2) points. Thus, from Theorem 3 the ∆-factor on
the running time is of O(∆−6). From Theorem 1, ϵ = O(

√
∆)

and thus we obtain a factor of O(ϵ−12).
Using the multiplicative approximation in the modified al-

gorithm, similar results can be obtained for a combined ε-
multiplicative and ϵ-additive approximation of the worst case
cut (resulting an additional term for the running time with ε-
factor of O(ε−12)).

Using the methods above, other valuable measures besides
the worst case cuts can be obtained as well. For example,
the expected impact caused by a ‘random disaster’ (where
its location is randomly distributed), which can model failure
resulting from a natural disaster such as a hurricane or collateral
(non-targeted) damage in an EMP attack.

VI. NUMERICAL RESULTS

In order to test the algorithm presented, and estimate the ex-
pected impact of cuts on communication networks in the USA,
we implemented the algorithm as a C program. Data for the
population density of the USA [7], downsampled to a resolution
of ∆ = 27km was taken as the intensity function f(u). The
function ω(u, v) was taken to be 1/dist(u, v) , where dist is
the Euclidean distance between the points [3]. The capacity
probability function h was taken to be constant, independent
of the distance, reflecting an assumption of standard equipment.

Results are given in Fig. 6. As can be seen , the most
harmful cut would be around NYC, as expected, where for
the larger cut radius, a cut between the east and west coast,
effectively disconnecting California from the north-east, would
also be a worst case scenario. Lower, but still apparent maxima
are observed in the Los-Angeles, Seattle and Chicago areas.
Comparing the results to the results obtained for the fiber
backbone in [13] it can be seen that some similarities and some
dissimilarities exist. While the NYC maxima is apparent in all
measures, California seems to be missing from the maxima in
[13], probably reflecting the low density of fibers in that area in
the map studied in [13]. As many fibers may exist that are not
represented on the map in [13], it may be reasonable to assume
that a cut around California would have a more significant effect
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Fig. 6. Color map of the centers of circular cuts with radius r = 8
(approximately 216km) and ω(u, v) ∼ 1/dist(u, v). Red is most harmful.
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Fig. 7. Color map of the centers of circular cuts with radius r = 8
(approximately 216km) and ω(u, v) ∼ 1/dist2(u, v). Red is most harmful.

than reflected there. On the other hand, several worst case cuts
in Texas, and especially in Florida are apparent in [13] and
are missing in the current simulation results. It seems that the
effect of the narrow land bridge in Florida makes cuts there
especially harmful, whereas our simulation assumes links are
straight lines, which will make links to both east and west coast
pass through the ocean, thus making cuts less harmful.

In order to examine a different assumption on the link
distribution, we also simulated a distribution with ω(u, v) ∼
1/dist2(u, v). Results are given in Fig. 7. As can be seen, the
results are pretty similar, with the exception of the maximum
between California and the east coast, which is probably only
expected for a length distribution allowing very long links. In
fact, these results are closer to the results in [13].

As a full map of communication lines is not available, it
is still unclear how good of an approximation the results here
supply. However, the tool can be used in conjunction with more
complicated modeling assumptions, including topographic fea-
tures and economic considerations to give more exact results.

VII. CONCLUSIONS

Motivated by applications in the area of network robustness
and survivability, we focused on the problem of geographi-
cally correlated network failures. While previous works in this
emerging field focused mainly on deterministic networks, we
studied the problem under non-deterministic network models.

We described polynomial time approximation algorithms for
finding the damage caused by cuts at different points in our
spatial random graph model and to approximate the location
and damage of the worst case cuts. We proved the correctness

of the scheme and mentioned the trade between running time
and accuracy, for both the additive and multiplicative terms.

We applied the method to approximate the damage caused
by cuts in different locations in the USA where the nodes were
modeled probabilistically based on the population density map
and the links based on distances. Some of the results agree with
the exact results obtained before on a fiber backbone map of the
USA and some do not. It is yet to be determined if taking into
account more links would lead to results closer to our scheme’s
prediction or whether the results are fundamentally different
due to an inexact link model. However, the tool can be used
in conjunction with more complicated modeling assumptions,
including topographic features and economic considerations to
give more accurate results.

Thus, this scheme can be used as a tool for evaluating
network vulnerabilities, and also as a tool for policy makers
and engineers to design more robust networks by placing links
along paths that avoid areas of high damage cuts.

Some future research directions include robust network de-
sign in the face of geographical failures.

ACKNOWLEDGMENTS

We thank the BSF for support under grant 2010414. We
thank David Hay for his valuable comments and discussion.

REFERENCES

[1] P. K. Agarwal, H. Kaplan, and M. Sharir, “Union of random minkowski
sums and network vulnerability analysis,” in Proceedings of the twenty-
ninth annual symposium on Computational geometry, ser. SoCG ’13.
New York, NY, USA: ACM, 2013, pp. 177–186.

[2] P. Agarwal, A. Efrat, S. Ganjugunte, D. Hay, S. Sankararaman, and
G. Zussman, “The resilience of wdm networks to probabilistic geograph-
ical failures,” Networking, IEEE/ACM Transactions on, vol. 21, no. 5, pp.
1525–1538, 2013.

[3] A. L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, October 1999.

[4] R. Bhandari, Survivable networks: algorithms for diverse routing.
Kluwer, 1999.

[5] A. Fabrikant, A. Luthra, E. N. Maneva, C. H. Papadimitriou, and
S. Shenker, “On a network creation game,” in PODC, 2003, pp. 347–
351.

[6] O. Gerstel and R. Ramaswami, “Optical layer survivability: a services
perspective,” IEEE Commun., vol. 38, no. 3, pp. 104–113, Mar. 2000.

[7] Global Rural-Urban Mapping Project, Version 1, Network Data, 2000.
[Online]. Available: http://sedac.ciesin.columbia.edu/data/set/grump-v1-
population-density

[8] J. Manchester, D. Saha, and S. K. Tripathi (eds.), “Protection, restoration,
and disaster recovery,” IEEE Network, Special issue, vol. 18, no. 2, Mar.–
Apr. 2004.

[9] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: a new
approach to the design of WDM-based networks,” IEEE J. Sel. Areas
Commun., vol. 20, no. 4, pp. 800–809, May 2002.

[10] A. Narula-Tam, E. Modiano, and A. Brzezinski, “Physical topology
design for survivable routing of logical rings in WDM-based networks,”
IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1525–1538, Oct. 2004.

[11] S. Neumayer, A. Efrat, and E. Modiano, “Geographic max-flow and min-
cut under a circular disk failure model,” in INFOCOM, 2012, pp. 2736–
2740.

[12] S. Neumayer and E. Modiano, “Network reliability under random circular
cuts,” in GLOBECOM, 2011, pp. 1–6.

[13] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
vulnerability of the fiber infrastructure to disasters,” IEEE/ACM Trans.
Netw., vol. 19, no. 6, pp. 1610–1623, 2011.

[14] R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the In-
ternet: A Statistical Physics Approach. New York, NY, USA: Cambridge
University Press, 2004.

IEEE ICC 2014 - Communication QoS, Reliability and Modeling Symposium

1177



p
d

∆

D

ru

v

t1

t2w

Fig. 8. t1 and t2 are tangents to a circle of radius ∆ centered at u and to the
circular cut. The colored areas depicts the extremum of difference for possible
γ-links endpoints emanating from a point within the circle centered at u at one
side of the cut.

p

2∆

D

r

v r

b

α
b

u

w

q

Fig. 9. The perpendicular tangents from a point u on the circular cut and
from a point v at distance 2∆ from the circular cut. The area in grey depicts
the extremum of difference for possible γ-links endpoints emanating from u
and v at one side of the cut.

[15] Y. Shavitt and E. Shir, “Dimes: let the internet measure itself,” Computer
Communication Review, vol. 35, no. 5, pp. 71–74, 2005.

[16] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
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APPENDIX

Some technical results are needed for proving the main
theorems. We first notice that, given a point u at a distance
d from a circular cut, and a point v at a distance ∆ from
u, the difference between the area of endpoints of γ-links
starting at point u to those starting at point v is bounded in
the area between (a) the segment from u to the boundary of
Rec tangent to the cut (b) the segment from v to the boundary
of Rec tangent to the cut (c) the boundary of Rec. Plus the
area bounded by (a), (b) and the boundary of the circular cut.
Furthermore, the extrema of the area of difference are obtained
in the cases where the segment from v to the boundary of Rec
tangent to the cut is also tangent to the circle centered at u
with radius ∆. See Fig. 8.

For simplicity, in the following lemmas we assume the
tangents hit the same side of Rec. Other cases can be handled
similarly, resulting an additional factor of 4. When bounding
the error in the theorems of this paper, one should consider a
bound, feasible for all cases, and add a factor of 2 (to bound also
the area of possible γ-links endpoints obtained by the additional
tangents emanating from u and v to the other side of the cut).

Lemma 2: The area bounded by (a) the tangent at a point u
on the circumference of the circular cut (b) the tangent to the cut
from any point v at distance 2∆ from u (c) the circumference
of the cut and (d) the boundary of Rec (same side), is bounded
by c

√
∆ for some constant c. See Fig. 9.

Proof: The extremum of the difference between the two
tangents is when the tangent to the circle is also a tangent to
the circle of radius 2∆ centered at u, i.e., when the segment
of length 2∆ starting at point u is perpendicular to the tangent
at its other endpoint, v. See Fig. 9.

Let q be the point of intersection of the second tangent and
the circular cut, and let w be the point of intersection between
the two tangents. Let p be the center of the circle. We have
∠upw = ∠wpq = α and angle ∠uwv = 2α.

Let b = d(u,w) = d(w, q) and d(w, v) = a =
√
b2 − 4∆2.

We have tanα = b/r, where r is the radius of the circle, and
tan 2α = 2∆√

b2−4∆2
. Using tan 2α = 2 tanα/(1− tan2 α) one

obtains b2 = (∆2r2 + ∆r3)/(r2 − ∆2). Thus, r∆ ≤ b2 ≤
2r∆. The area of the triangle bounded by both tangents and
the boundary of Rec is bounded by

1

2
L2 sin 2α ≤ L2 sinα ≤ L2 tanα ≤ L2

√
2∆

r
,

where L is the diagonal length of Rec.
The area bounded by the segments uw and wq and the

circular arc uq is bounded by the area of triangle △uwq, which,
in turn is bounded by b2 ≤ 2r∆ ≤ L2

√
2∆
r .

Lemma 3: For a point u at a distance d from a circular
cut cut(p, r) and a given ∆ > 0, the area between (a) the
circumference of the cut (b) the tangent to the cut from u (c)
the tangent to the cut from a point v located at a distance ∆
from u and (d) the boundary of Rec (same side), is bounded
by c

√
∆ for some constant c. See Fig. 8.

Proof: Let w be the point of intersection between the two
tangents (from point u to the cut and from point v to the cut).
We have sin(∠uwv) = ∆/(

√
(r + d)2 − r2 + b), where b is

the distance between the point of intersection of each of the
tangents with the cut and the point w. we have sin(∠uwv) =
∆/(

√
2rd+ d2 + b).

Now for d ≤ ∆ the point v is located within a distance
of d + ∆ ≤ 2∆ from the circumference of the cut, and
the Lemma follows from Lemma 2. If d > ∆ we have
sin(∠uwv) < ∆/(

√
2rd) < ∆/(

√
2r∆). Thus, the area

between the tangents within Rec is bounded by L2
√

∆/r
where L is the diagonal length of Rec. Similarly to Lemma 2
the area between the two tangents and the circle is also bounded
by b2 sin(π−∠uwv) = b2 sin(∠uwv) <

√
r3∆, as b < r since

both tangents intersect the same quadrant of the cut.
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