000

TEL AVIV NU'011IIN
UNIVERSITY 2NN

Tel Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences
Blavatnik School of Computer Science

New Algorithms for Some Classical
Problems in P

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

by
Omer Gold

Thesis supervisor: Prof. Micha Sharir

Submitted to the Senate of Tel Aviv University
August 2019

Abstract

The search for optimal algorithms is at the core of computer science since its emergence as a field.
Yet for the majority of the studied problems we do not know whether state-of-the-art algorithms
are the best possible. Among the most popular problems in P are those that have standard algo-
rithms that run in O(n®) time for an input of size n, where ¢ = 2 or 3. For ¢ = 3 (cubic time),
we can find combinatorial matrix multiplication problems, and computing all-pairs-shortest-paths
(APSP) of a directed real-weighted graph. For ¢ = 2 (quadratic time), we can find many funda-
mental problems, such as 3SUM, and many basic matching problems between strings, curves, and
point-sequences, such as Edit Distance, Longest Common Subsequence, Discrete Fréchet Distance,
Geometric Edit Distance, and Dynamic Time Warping. These problems are usually referred to as
“quadratic problems”.

In this thesis, we present improved algorithms and decision trees for the following core problems.

e We improve the (2k—2)-linear decision tree bound for k-SUM and the subquadratic algorithm
for the famous 3SUM problem, both obtained by Grgnlund and Pettie [104]. Follow-up to
our work, Kane, Lovett, and Moran [114] obtained the breakthrough of showing a 2k-linear
decision tree for k-SUM with near-linear depth. Chan [55] improved our 3SUM algorithm and

currently holds the record for the algorithm with the best runtime bound for the problem.

e We give the first subquadratic algorithms for computing Dynamic Time Warping (DTW)
and Geometric Edit Distance (GED) between two point-sequences in R (and also in R?, for
any constant d, when the underlying metric is polyhedral), breaking the nearly 50 years
old quadratic time barrier for these problems. The DTW measure is an extremely popular

matching method, being massively used in dozens of applications.

For computing the related Discrete Fréchet Distance, we show linear decision trees with

near-linear depth, for any fixed dimension, when the underlying metric is polyhedral.

e We give improved strongly-polynomial subcubic algorithms for solving the high-dimensional
(e.g., R™) Closest Pair problem under the Lo, metric, and give improved runtime analysis for
computing the related dominance product matrix of n points in dimension polynomial in n.
Computing the dominance product itself is an important task, since it is applied in many

algorithms, in addition to our Closest Pair algorithm, as a major black-box ingredient.

e Another result, unrelated to the main motif of the thesis, shows the existence of sparse
(subquadratic) diameter spanners with various size-stretch trade-offs, and gives efficient al-
gorithms to construct them. That is, given a directed graph G = (V, F) and a stretch factor
t > 0, a subgraph H = (V,Eyg € E) is a t-diameter spanner iff diam(H) < [t - diam(G)],

where diam(H) and diam(G) denote the diameter of H and G, respectively.

Acknowledgments

In the next several paragraphs I will thank the people who supported me during the time of
pursuing my PhD. Then, I will share some of my personal experience from the last five years as a
PhD student, so this will be a bit longer than a typical acknowledgments section.

First, I would like to deeply thank my advisor Micha Sharir, who took me under his wings
and guided me on how to approach theoretical computer science. The most valuable thing for me
was the numerous research discussions with Micha, having a peek at how he approaches research
problems, the way he simplifies them and getting fast to their bottleneck, the core one should be
focused on when trying to discover new results. I perceive these discussions as “private lessons” for
a deep analytical thinking, and in particular, for research in theoretical computer science, regardless
of the problems in hand. I feel it totally changed the way I approach analytical problems, and not
only related to research, but also in other complex matters I encounter, such as in programming,
and solving engineering problems. The value of these “lessons” is priceless.

I would like to thank Liam Roditty, who discussed with me about graph diameter algorithms,
and connected me with Keerti Choudhary. This has led to the discovery of non-trivial “diameter
spanners” in directed graphs, and to the joint paper with Keerti [65], which Chapter 6 in this
thesis is based on. This is also the right place to thank my co-author Keerti Choudhary, for her
dedication to our project and the fruitful joint work.

I would like to thank Reuven Cohen, my master’s advisor from Bar-Ilan University, who en-
couraged me to pursue a PhD, and provided all the assistance needed to make it happen. I thank
also Moshe Lewenstein who gave me a valuable feedback for my PhD research proposal, and invited
me to a full week workshop on “Structure and Hardness in P” at the Dagstuhl castle in Germany.

I would like to thank the senior researchers who reviewed this thesis. I felt honored to re-
ceive your reviews. A special thanks goes to the reviewer who noticed that we can shave-off the
log log log n factor from our Dynamic Time Warping and Geometric Edit Distance algorithms that
appear in Chapter 4, using the SMAWK algorithm for totally monotone matrices [9].

I would also like to thank fellow PhD students with whom I had many interesting research
conversation with: Sarel Cohen, who introduced to me some cool research questions in graph
algorithms, and sparked my interest in the field. Dor Minzer, who I shared with some research
problems I have been working on, and gave me valuable feedbacks. Orr Fischer, with whom I had
many interesting conversations about theoretical computer science and academia in general.

Last but by no means the least, I would like to thank my parents, Michael and Neomi, who
supported me throughout this long academic track, from starting as an undergraduate student
in Ben-Gurion University more than 10 years ago, throughout pursuing my master’s in Bar-Ilan
University, and finally, throughout the extensive journey of doing a PhD in Tel Aviv University.

Thank you for your endless support, encouragement, and being there for me whenever needed.

iii

iv

My Personal Experience. Computer science is a relatively new scientific field, and it is emer-
ging with many important discoveries every year. The amount of new significant discoveries in
theoretical computer science that were discovered only during the time I was a PhD student really
amazed me. I feel lucky I had the opportunity to do research in theoretical computer science
during this time in history, as I could witness plenty of new interesting results and breakthroughs
being published by the community in “real time”, and sometimes even to contribute a little bit. T
do not know for how long this rate of new significant discoveries in computer science will continue,
but thinking again about how young this scientific field is (which only 100 years ago nobody knew
about), I guess that this rate will not decline anytime soon.

I remember that when I began my PhD studies in late 2014, my advisor Micha told me about a
recent breakthrough on the 3SUM problem (determining whether there are three numbers that sum
to zero in a given set of n real numbers). Allan Grgnlund and Seth Pettie [104] showed that 3SUM
can be solved in subquadratic time. Although only small polylogarithmic factors were improved
over the well-known ©(n?) time bound, this result made huge strides, since the 3SUM problem is
well-known for basing conditional lower bounds for many other problems, and therefore, it raised
doubts on the optimality of many other algorithms, such as for determining whether n given points
in the plane are located in a general position (i.e., no three points lie on a common line).

The same day, I started reading the paper of Grgnlund and Pettie with enthusiasm, hoping
that maybe a further improvement is possible. Since it was the first serious theory paper I read, it
took a while until I controlled the details. It took months of thinking and many discussions with
Micha until finally finding a way to improve their algorithm and decision tree bounds. Although
the improvements were small (shaving polylogartihmic factors from both bounds), the exciting
thing was that my first theory result was about a well-known problem.

Later, Timothy M. Chan [55] improved a bit further the algorithmic time bound for 3SUM (by
another logarithmic factor). In 2017, a breakthrough on this problem came from Daniel Kane,
Sachar Lovett, and Shay Moran [114], who showed that the decision tree complexity of 3SUM is
near-linear, improving significantly our O(n%2) decision tree bound (and the O(n*?24/logn) bound
of Grgnlund and Pettie). I was very surprised that such a significant improvement is even possible.
Their technique also gave near-linear decision tree complexity bounds for other core problems,
such as “Sorting X 4+ Y” and “All-Pairs-Shortest-Paths”. What I described in this paragraph truly
relates to what I mentioned in the first paragraph, about being lucky to witness breakthroughs
during this time, especially when they are related to topics I have been working on.

Then, I have been working on extending the technique we used for the 3SUM problem, and
looking for other fundamental problems to apply it, but did not find one. Until, one day Pankaj
K. Agarwal gave a talk in our weekly computational geometry seminar about approximation al-
gorithms for the Dynamic Time Warping and Geometric Edit Distance problems [8]. That was

the first time I heard of these problems, and I discovered then that the best known algorithms

to solve them use a standard dynamic programming approach that takes quadratic time [150].
During his talk I started to think about whether we can break this quadratic-time barrier. It took
a dramatically more sophisticated use of the techniques used in our 3SUM paper, in conjunction
with other techniques, until we finally managed to break the 50 years old quadratic time barrier for
both Dynamic Time Warping and Geometric Edit Distance by a loglogn factor (actually it was
a loglogn/logloglogn factor, but thanks again to one of the reviewers of this thesis, who noticed
that we can in fact shave-off the logloglogn factor). Now, when I look at this improvement factor
it seems funny, as its growth rate (in proportion to the input size n) is very slow, but this is the nice
thing about theoretical computer science, our goal is to find the optimal algorithm, the one that
its runtime cannot be improved by any asymptotic factor. Practically, our algorithm can perhaps
improve the runtime for very large inputs (depends also on the constant of proportionality in our
time bound) over the standard quadratic-time algorithm.

The next result was on the high-dimensional L., Closest Pair problem. That is, finding the
closest pair of points under the L, metric in a given set of n points in R¢, where d = poly(n)
(for example d = n). We gave a new algorithm for this problem, improving a previous algorithm
of Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat [112]. The thing I remember the
most from this paper is that it appeared in the ISAAC 2017 conference that was held in Phuket,
Thailand in a very nice suites hotel on the beach. It was definitely my most unforgettable academic
trip to date. This trip has led me to travel more in Thailand, learn more about Southeast Asia,
and to visit the Philippines for a whole month a year later. I had a blast in both Thailand and
the Philippines. I met in both countries super friendly people and liked the general relaxed vibe.

After I finished working on these three papers, I felt eager to diversify my research and looked
for areas I have not worked on before. I started exploring more seriously about graph algorithms.
This has led to some interesting discussions with Liam Roditty, who also connected me with
Keerti Choudhary. The work with Keerti has led to our joint SODA paper [65], in which we proved
the existence of various non-trivial “diameter spanners” for directed graphs. That is, that any
sufficiently dense directed graph has a significantly sparser subgraph that preserves the diameter
of the original graph up to a factor that is strictly less than 2 (called also “stretch factor”). We
showed how to efficiently compute such subgraphs with various non-trivial size-stretch trade-offs.
This opens a large room for future work, and it will be interesting to see what new results on this

topic will be further discovered.

Omer Gold
December 28, 2019

Contents

Abstract

Acknowledgments

1 Introduction

1.1
1.2
1.3
14

3SUM, k-SUM, and Linear Degeneracy
Geometric Pattern Matching Algorithms
High Dimensional Closest Pair under L., and Dominance Product

Diameter Spanners Lo

2 Preliminaries and Techniques

2.1
2.2

Preliminaries and Notations e e e

Techniques e

3 3SUM, k-SUM, and Linear Degeneracy

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Background oL
Summary of Our Results and Related Work
The Quadratic 3SUM Algorithm and Search-Contours
Fredman’s Trick, Pairwise Sums, and Fractional Cascading
Grgnlund and Pettie’s Subquadratic Decision Tree for 3SUM
Improved Decision Trees for 3SUM, k-SUM, and k-LDT
Subquadratic Algorithms for 3SUM oo
Improved Deterministic Subquadratic 3SUM Algorithm

4 Geometric Pattern Matching Algorithms

4.1

4.2
4.3

Dynamic Time Warping and Geometric Edit Distance
4.1.1 Problem Statements
4.1.2 Summary of Our Results and Related Works
Preliminaries, Tools, and the Quadratic Time DTW Algorithm
Dynamic Time Warping in Subquadratic Time

4.3.1 Extension to High-Dimensional Polyhedral Metric Spaces

vi

iii

B N S, S S

10
11
12

19
20
23
24
25
28
29
34
35

CONTENTS

4.3.2 Lifting the General Position Assumption

4.4 Geometric Edit Distance in Subquadratic

Time

4.5 Near-Linear Depth Decision Trees for Polyhedral Discrete Fréchet Distance

4.5.1 Problem Statement and Quadratic Algorithm

4.5.2 Decision Tree for the Euclidean P1

ane Lo s s s e e e e e e

4.5.3 Decision Trees for the Decision Problem under Polyhedral Metrics

4.5.4 Solving the Optimization Problem

5 High Dimensional Closest Pair under L,
5.1 Background
5.1.1 Summary of Our Results

5.2 Dominance Product

5.2.1 Generalized and Improved Bounds

and Dominance Product

5.3 Reducing Ly, Closest Pair Decision to Dominance Product

5.4 Solving the Optimization Problem . . .
5.4.1 Strongly-Polynomial Subcubic Alg

orithms

5.5 A Faster Algorithm for L, Closest Pair with Bounded Integer Coordinates

6 Diameter Spanners
6.1 Background,
6.2 Our Results and Related Works
6.3 Preliminaries and Techniques
6.4 Construction of Diameter Spanners . . .
6.4.1 (3/2)-Diameter Spanner
6.4.2 (5/3)-Diameter Spanner

6.4.3 General (low-stretch or small-size)-Diameter Spanner

7 Conclusions and Open Questions
7.1 Bringing the Four Russians to Geometry:
7.2 Sorting X+Y
7.3 Additional Classical Quadratic Problems

Bibliography

General Position Testing

vii

96
o7
59
60
62
62
66

69
70
72
73
74
7
78
78
80

82
83
84
86
89
89
90
91

93
94
96
97

100

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION 2

The search for optimal algorithms is at the core of computer science since its emergence as
a field. Yet for the majority of the studied problems we do not know whether state-of-the-art
algorithms are the best possible. Among the most popular basic problems in P are those that have
standard algorithms that run in O(n®) time, where ¢ = 2 or 3. For ¢ = 3 (cubic time), we can find
many kinds of combinatorial matrix multiplication problems, and for ¢ = 2 (quadratic time), we
can find many fundamental problems, such as 3SUM, and many basic matching problems between
strings, curves, and point-sequences, such as Edit Distance (ED), Longest Common Subsequence
(LCS), Geometric Edit Distance (GED), Dynamic Time Warping (DTW), and Discrete Fréchet

2*Q(l))—time algorithm is known for any of these problems, they are usually

Distance. Since no O(n
referred to as “quadratic problems”.

Motivated to find optimal algorithms for these basic problems, researchers have developed
improved algorithms with time bounds of the form O(n¢/polylog(n)), where polylog(n) stands for
logk n, for some constant k > 0. Due to these works, the complexity of many classical quadratic
problems has now upper bounds of the form O (ng/ polylog(n)). It was only recently that the
well-known 3SUM problem (determining whether there are three numbers in a given set of n
real numbers that sum to zero) was shown to have such a subquadratic bound by Grgnlund and
Pettie [104]. Since the complexity of the 3SUM problem serves as a lower bound for numerous
other problems [95, 108], which are also called 3SUM-Hard problems (shown by reductions from
3SUM), any better understanding of its complexity is highly desired.

A complementary line of research to that of searching for optimal algorithms is to better under-
stand our limits for faster algorithms by proving lower bounds. However, it seems that our current
knowledge on “real” (unconditional) lower bounds is very limited. Nevertheless, in recent years, a
significant progress has been made towards a better understanding of the hardness of basic pro-
blems in P, by proving “conditional lower bounds” via reductions from core problems, such as 3SUM,
(min, +)-matrix multiplication (APSP), and CNF-SAT. For example, determining whether there are
three collinear points in a set of n points in the plane is known to be at least as hard as 3SUM (this is
one of the aforementioned 3SUM-Hard problems). It was recently shown that, assuming that CNF-
SAT takes Q2 (2(1_0(1))”) time (which is implied by the so-called Strong Ezponential Time Hypothe-
sis (SETH)) implies that there is no O (n?~%())-time algorithm for LCS, Discrete Fréchet Distance,
Edit Distance, and DTW. See [3-6,17,23,27,38,63,95,113,122,137,138,142,153,156], for examples
of such conditional lower bounds.

Recent seminal works by Abboud et al. [3], and by Abboud and Bringmann [2] show that even
an improvement by a sufficiently high polylogarithmic factor for any of these problems would lead
to significant consequences, such as faster Formula-SAT algorithms, or new circuit complexity lower
bounds. These works suggest that current state-of-the-art algorithms for these problems may be
optimal, or near optimal, in the sense that polylogarithmic factor improvements in runtime may

be the only way to push the efficiency of the solution “to the limit”.

CHAPTER 1. INTRODUCTION 3

The review so far pertains to the standard real-RAM model (also referred to as the uniform
model), which counts all the standard arithmetic and boolean operations performed by the algo-
rithm. A degenerate, yet very popular model is the decision tree model, in which each branching
is based on sign test of some (usually constrained) algebraic expression on the input values (note
that this model does not count such a sign test on non-input values as a branching operation). In
this model only branching operations are counted. The complexity of a decision tree is its depth
(which bounds the number of branching operations in any execution). A very popular type of
the decision tree model that we will often study in this work is the r-linear decision tree model,
where all the algebraic expressions are restricted to be linear and with at most r terms. A formal
definition of this model and its randomized variant are given in Section 2.1.

In this thesis, we give improved algorithms and decision trees, for some of the core problems
in P, such as 3SUM, Dynamic Time Warping (DTW), Geometric Edit Distance (GED), Discrete
Fréchet Distance, Dominance Product, and the High-Dimensional Closest Pair problem under Lg,.

In Chapter 3, we improve the 4-linear decision tree bound and the subquadratic algorithm of the
famous 3SUM problem, and the (2k — 2)-linear decision bound for k-SUM and Linear Degeneracy
Testing, given by Grgnlund and Pettie [104]. Follow-up to our work, Kane, Lovett, and Moran [114]
have obtained a fascinating breakthrough on these problems, such as showing that the 2k-linear
decision tree complexity of k-SUM is only O(knlog®n).

In Chapter 4, we give the first subquadratic algorithms for computing Dynamic Time Warping
(DTW) and Geometric Edit Distance (GED) between two point-sequences in R, breaking the 50
years old quadratic barrier of these problems. The DTW and GED measures are extremely popular
matching methods, being massively used in dozens of applications, such as speech recognition,
geometric shape matching, DNA and protein sequences, matching of time series data, GPS, video
and touch screen authentication trajectories, music signals, and countless data mining applications.
see [48,71,77,118-120,132,140,151] for some examples. To date, searching “dynamic time warping”
(with quotes) in Google Scholar yields approximately 40,000 papers, and approximately 270,000
results in the standard web search. This illustrates the tremendous popularity and importance of
this measure.

In Chapter 5, we give improved algorithms for high-dimensional closest pair problems under
the Ly metric. A standard (trivial) cubic time algorithm can find the closest pair in a set of n
points in R™. We give the first strongly-polynomial subcubic algorithm for this problem, improving
the previously known weakly-polynomial subcubic bound [112]. We also give improved runtime
analysis for computing the related dominance product matrix of n points in dimension poly(n).

In the following sections, we give a short overview for each of the chapters of this thesis.

CHAPTER 1. INTRODUCTION 4
1.1 3SUM, £-SUM, and Linear Degeneracy

In Chapter 3 we study the 3SUM, k-SUM and Linear Degeneracy problems. This chapter is based
on the article [101] by the author and his advisor.

Given a set of n real numbers, the general 3SUM problem is to decide whether there are three
of them that sum to zero. Until a recent breakthrough by Grgnlund and Pettie [104], a simple
©(n?)-time deterministic algorithm for this problem was conjectured to be optimal. (In fact, an
early study of 3SUM-Hard problems by Gajentaan and Overmars [95] denoted them as “n?-Hard”
problems.) Over the years many algorithmic problems have been shown to be reducible from
the 3SUM problem or its variants, including the more generalized forms of the problem, such as
k-SUM and k-variate linear degeneracy testing (k-LDT). Given a linear function f(x1,...,2x) =
@0 + X <i<p i and a finite set A < R, the k-variate linear degeneracy testing problem (k-LDT)
is to decide whether 0 € f(AF). When f(x,...,73) = Zle x; the problem is called k-SUM. For
a general k, it is an open question whether these problems can be solved in o(n[k/ 2]) time (as
mentioned above, for k = 3 we can). The conjectured hardness of these problems have become
extremely popular for basing conditional lower bounds for numerous algorithmic problems in P.

In Chapter 3, we show that the randomized 4-linear decision tree complexity of 3SUM is
O(n®?), and that the randomized (2k — 2)-linear decision tree complexity of k-SUM and k-LDT
is O(n*/?), for any odd k = 3. (See Section 2.1 for a formal definition of the randomized r-
linear decision tree model.) These bounds (albeit being randomized) improve the corresponding
O(n*?\/logn) and O(n*/?\/logn) bounds obtained by Grenlund and Pettie [104] (they are the
first who showed a linear decison tree for 3SUM with a subquadratic depth). Additionally, we
give another deterministic algorithm for 3SUM that runs in O(n?loglogn/logn) time, improving
the corresponding O (n?(loglogn/logn)??) time bound of Grgnlund and Pettie [104]. The latter
bound matches an independent bound by Freund [94], but our algorithm is somewhat simpler, due
to a better use of the word-RAM model.

Following our work, there were many recent developments on these problems.

e A breakthrough by Kane, Lovett, and Moran [114] proved that the 2k-linear decision tree
complexity of k-SUM is only O(knlog®n), and gave near-optimal decision trees also for other

fundamental problems such as “sorting X + Y, and APSP. !

e Chan [55] improved another logarithmic factor in the time complexity of 3SUM, showing a

deterministic algorithm for 3SUM that runs in O (n2 (log log n)o(l)/log2 n) time.

e Lincoln et al. [127] proved that existing 3SUM algorithms can be implemented to use only

O(y/n) read/write memory space-size.

ITheir k-SUM decision tree complexity bound significantly improves our bound, albeit our bound is in the
(2k — 2)-linear decision tree model, which is slightly weaker than the 2k-linear decision tree model.

CHAPTER 1. INTRODUCTION 5

e Positive 3SUM instances can be trivially confirmed in O(1) nondeterministic time. Carmosino
et al. [51] proved that negative 3SUM instances over integers can be confirmed in 5(n3/ 2)
nondeterministic time. They suggest that this result makes it “unlikely” that SETH implies

an Q(n>~°M)-lower bound for 3SUM over integers.

e Barba et al. [26] studied a polynomial variant of 3SUM, in which the criterion +y + z =0
is replaced by f(z,y,z) = 0, for some constant-degree polynomial f. They showed an

algebraic decision tree with depth O(n'%7+¢)

, for any ¢ > 0, for this problem, and an
actual subquadratic algorithm that runs in O(n?/polylog(n)) time. They also showed that
general position testing in the plane (also known as 3-Collinearity: testing whether any three
input points lie on a line) can be solved in subquadratic time, assuming the n input points

1/6—¢

lie on at most (logn) constant-degree polynomial curves.

e Kopelowitz, Pettie, and Porat [122] showed that any Q(n%?*¢)-lower bound on 3SUM over
integers implies lower bounds on various problems such as triangle enumeration and offline

set disjointness. Their results improve the conditional lower bounds of Pétragcu [137].

1.2 Geometric Pattern Matching Algorithms

In Chapter 4 we study basic geometric pattern matching problems. This chapter is based on the
articles [99,102] by the author and his advisor.

Geometric pattern matching is the popular task of aligning or measuring similarity between
curves or point-sequences in some metric space. Very popular similarity measures are Dynamic
Time Warping, Geometric Edit Distance, and Discrete Fréchet Distance. In Chapter 4 we study
the problems of computing these measures.

Dynamic Time Warping (DTW) and Geometric Edit Distance (GED) are basic similarity me-
asures between curves or general temporal sequences (e.g., time series) that are represented as
sequences of points in some metric space (X, dist); formal definitions of both measures are given
in Chapter 4. The DTW measure is massively used in various fields of computer science and com-
putational biology, such as speech recognition, geometric shape matching, comparing DNA and
protein sequences, music signals, time series data, GPS, video and touch screen authentication
trajectories, and countless data mining applications. See [48,71,77,118-120,132,140,151] for some
examples.

Consequently, the task of computing the DTW (or GED) measure is among the core problems
in P. Despite extensive efforts to find more efficient algorithms, the best-known algorithms for
computing the DTW or GED between two n-point sequences in X = R? are long-standing dynamic
programming algorithms that require quadratic runtime, even for the one-dimensional case d = 1,

which is perhaps one of the most used in practice.

CHAPTER 1. INTRODUCTION 6

First Subquadratic Algorithms for DTW and GED. In Section 4.1, we break the nearly 50
years old quadratic time bound for computing DTW or GED between two sequences of n points in
R, by presenting deterministic algorithms that run in O (n2 /loglog n) time. Our algorithms can
be extended to work also in high-dimensional spaces R?, for any constant d, when the underlying
distance-metric dist is polyhedral® (e.g., L1, Lo).

It is very plausible that these problems cannot be improved beyond this kind of bound (or at
most a “small” polylogarithmic-factor improvement), as Bringmann and Kiinnemann [39] showed

2-9(M)-time algorithm, unless SETH fails. Subse-

that even one-dimensional DTW has no O(n
quently, Abboud et al. [3], and Abboud and Bringmann [2] showed that even a sufficiently large
polylog(n)-factor improvement over the quadratic-time upper bound of similar matching problems,
would lead to major consequences, such as faster Formula-SAT algorithms and new circuit lower

bounds.

Discrete Fréchet Distance under Polyhedral Metrics. Another popular similarity measure
between curves and point-sequences is the Discrete Fréchet Distance. Bringmann and Mulzer [40]
showed that, assuming SETH, this problem cannot be solved in O (n?~))) time, even for the
one-dimensional case (with the standard distance function dist(x,y) = |z — y|). In Section 4.5 we
show that there is a simple 2-linear decision tree for this problem with depth only O(n log? n), and
in general, for two point-sequences in R?, we show that there is a 2d-linear decision tree with depth

O(nlog?®n), for any constant d, when the underlying distance metric is polyhedral? (e.g., Ly, L).

1.3 High Dimensional Closest Pair under L., and
Dominance Product

In Chapter 5 we study the problem of computing high-dimensional closest pair under Ly. This
chapter is based on the article [100] by the author and his advisor.

Given n points in R?, the Closest Pair problem is to find a pair of distinct points at minimum
distance under some specific metric. When d is constant, there are efficient algorithms that solve
this problem, and fast approximate solutions for general d. However, obtaining an ezact solution
in very high dimensions (e.g., d = n) seems to be much less understood. We consider the high-
dimensional L., Closest Pair problem in RY, where d = n" for some r > 0, and the underlying
metric is Ly. Clearly, a naive algorithm can solve this problem in O(dn?) time. For d = n, Indyk
et al. [112] give the first non-trivial subcubic-time algorithm for solving Ly, Closest Pair, however,
their result is weakly-polynomial since its runtime includes a factor that depends on the diameter

of the input points.

2That is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope with a
constant number of facets (this constant generally depends on the dimension d).

CHAPTER 1. INTRODUCTION 7

In Chapter 5, we improve and simplify the result of Indyk et al. [112] for Lo, Closest Pair, by
showing that this problem in R? can be solved by a deterministic strongly-polynomial algorithm
that runs in O(DP(n,d)logn) time, and by a randomized algorithm that runs in O(DP(n,d))
expected time, where DP(n,d) is the time bound for computing the dominance product for n
points in R?; that is, a matrix D, such that D[i,j] = |{k | pi[k] < p;[k]}|; this is the number of
coordinates at which p; dominates p;.

For L, Closest Pair in R? where all the coordinates of the points are integers from some interval
[~ M, M], we obtain an algorithm that runs in O (min{Mn*1"Y DP(n,d)}) time, where w(1,r, 1)
is the exponent of multiplying an n x n” matrix by an n” x n matrix. (The 5() notation hides
poly-logarithmic factors.)

We also give slightly better bounds for DP(n,d), over the known ones [129,158]. by giving a
more general analysis to the algorithm of Yuster [158] that uses rectangular matrix multiplications.
By plugging into our analysis the best-known bounds for multiplying an n x d matrix by a d x n
matrix (see [124,126]), one can obtain improved bounds for computing DP(n,d). Computing the
dominance product itself is an important task, since it is applied also in many other algorithms
as a major black-box ingredient (in addition to our Lo, Closest Pair algorithm), such as algorithms
for APBP (all pairs bottleneck paths) [74], and variants of APSP [158].

Following our work, Graf, Labib, and Uznariski [123] showed that in R?, dominance product
is computationally equivalent (up to polylogarithmic factors) to Closest Pair under any Lopy1
metrics (i.e., L3, Ls, L7,...). (Note that for any even constant p the runtime bound for solving L,
Closest Pair is currently much smaller than DP(n,d) [112].) In our result we actually show that
d-dimensional dominance product is at least as hard as d-dimensional L., Closest Pair. The result
of Graf, Labib, and Uznanski [123] together with our result show an interesting computational

connection between dominance product and high-dimensional Closest Pair problems.

1.4 Diameter Spanners

In Chapter 6 we initiate the study of Diameter Spanners, described below. This chapter is based on
the article [65] by the author and Keerti Choudhary on Extremal Distance Spanners. Since in [65]
there are further results that we do not include in this thesis, we could simplify the presentation
of the proofs of the theorems in Chapter 6 compared to their corresponding proofs in [65].

A spanner (also known as distance spanner) of an undirected graph G = (V, E) is a subgraph
H = (V,Eg < E) that approximately preserves all the pairwise distances between vertices in
the underlying graph G. Formally, H is a t-spanner of G iff for any pair of vertices u,v € V|,
dp(u,v) < t-dg(u,v), where dg(u,v) and dg(u,v) are the distances between u and v in H and G,

respectively. The parameter ¢ is referred to as the stretch factor of H. Given an undirected graph

G and a stretch factor ¢, a “good t-spanner” of G refers to a t-spanner that has a significantly

CHAPTER 1. INTRODUCTION 8

smaller (by a polynomial factor) set of edges than G has (i.e., significantly sparser than G).
Spanners were first introduced and studied in the 80s [22,133,134]. Althofer et al. [15] showed

that any undirected weighted graph with n vertices has a (2k — 1)-spanner of with O(n**1/k)

edges,
for any integer k£ > 0. Assuming a widely-believed girth conjecture of Erdés [84], this stretch-size
trade-off is essentially optimal.

Besides being theoretically interesting, spanners have numerous applications in different areas
of computer science, such as distributed systems, communication networks and efficient routing
schemes [16,69,70,96,97,135,141,147], motion planning [68, 73], approximating shortest paths [66,
67,79], and distance oracles [30,148].

For directed graphs, the notion of spanners is far less understood. That is because we cannot
have sparse spanners for general directed graphs. Even when the underlying graph is strongly
connected, there exists graphs with (n?) edges such that excluding even a single edge from the
graph results in a distance spanner with stretch as high as the diameter. In such a scenario, for
directed graphs, a natural direction to study is construction of sparse subgraphs that approximately
preserves the graph diameter. This property is captured by the notion of t-diameter spanner. Given
a directed graph G = (V, E), a subgraph H = (V, Eg € E) is defined to be a t-diameter spanner
iff the diameter diam(H) of H is at most ¢ times the diameter diam(G) of G.

For ¢t = 2 it is easy to construct such a subgraph H with O(n) edges, as described in Chapter 6.

This brings us to the following central question.

Question. Given a directed graph G = (V, E), and a stretch factor ¢ < 2, can we construct a
t-diameter spanner H = (V, Eg < E)? If so, how small can |Eg| be? and what is the trade-off

between t and |Ep|?

In Chapter 6 we show the following.

1. For any unweighted directed graph G with n vertices, we can compute a subgraph H that is

a (3/2)-diameter spanner of G, such that H has O (n3/2\/log n) edges.

2. For any unweighted directed graph G with n vertices and diameter D, we can compute a
subgraph H that is a (5/3)-diameter spanner of G, such that H has O (Dl/?’n‘V3 log?/® n)
edges. This is sparser than the above (3/2)-diameter spanner for D = o («/n/ log n)

3. Given an unweighted directed graph G = (V, E) with n vertices, for any ¢,¢ € [0, 1], we can
compute a subgraph H = (V, Eg < E) satisfying one of the following. Either

€

(a) H is a (1 + §)-diameter spanner of size O(n>~¢log" ¢ n), or

(b) H is a (2 — §)-diameter spanner of size O(n'*¢log® n).

For simplicity, the results given above are stated without runtime bounds (which are given in

Chapter 6), and for unweighted directed graphs. Nevertheless, our diameter spanner constructions

CHAPTER 1. INTRODUCTION 9

support directed graphs with bounded positive edge-weights. If G is edge-weighted with weights
taken from the interval [1, W], then the stretch of H will only increase by an additional additive
W term, on top of the multiplicative stretch factor ¢ from the unweighted case.

In [65] we show that the bounds from 1 and 2 are tight, and we also study other types of
extremal-distance spanners, such as eccentricity-spanners and radius-spanners. Additionally, we
show in [65] how to maintain extremal-distance spanners in dynamic settings. We do not include
these results in this thesis and refer the reader to [65] for further details.

We believe that extremal-distance spanners are interesting mathematical objects in their own
right. Nevertheless, such a sparsification of graphs suffices for many of the original applications of
the well-studied standard graph spanners mentioned above, such as in communication networks,
facility location problem, routing, etc. In particular, diameter-spanners with a sparse set of edges

are good candidates for backbone networks [96].

Chapter 2

Preliminaries and Techniques

10

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 11
2.1 Preliminaries and Notations

Linear Decision Trees. In Chapter 3 and Section 4.5 of Chapter 4 we study the complexity
of problems in the linear decision tree model of computation, both deterministic and randomized
variants. This model is often used to measure the number of comparison queries that an algorithm
executes.

Consider an input « = (z1,...,z,) of n real numbers, for a problem, and consider a Boolean
function f on x. An r-linear decision tree for f is a tree for which each node is labeled with a
linear expression in x with at most r terms, and has two outgoing edges, labeled 0 and 1. The
computation on input = for f proceeds at each node that it reaches by inspecting the sign of its
corresponding r-linear expression. If the sign is positive the computation continues in the subtree
reached by talking the 1-edge, otherwise it continues in the subtree reached by talking the 0-edge.
Thus, the input z follows a path through the tree. Each leaf stores a 0/1 value. We say that a
linear decision tree t decides f iff for every feasible input x, there is such a path in ¢, so that the
value f(z) is the one stored at the leaf that = reaches.

The complexity of the tree ¢ is its depth depth(¢), namely, the maximum length of a path in ¢
from the root to a leaf. The r-linear decision tree complexity of the function f is

D(f) = min depth(s),

where T is the set of all r-linear decision trees that decide f.

The definition above refers to the deterministic setting. For the randomized setting, let P be
a probability distribution over a set of r-linear decision trees 7 that decide a particular function
f. P(t) is the probability that tree t is chosen from this distribution. For a particular input z, let
cost(t,) be the length of the path in ¢ from the root to a leaf, following the branching operations
on the input x. Denote the expected number of branching operations (sign tests) a tree chosen

from 7 will make on input = by

cost(P,z) = 2 P(t) cost(t, x).
teT

The randomized r-linear decision tree complexity of f is

R(f) = rr%jin max cost(P, z).

x

It is easy to observe that, for any function f, R(f) < D(f). For more details on the decision

tree model and its variants see Arora and Barak [21, Chapter 12].

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 12

Model of Computation. In Chapters 3 and 4, when we analyze the time complexity of our
algorithms, we use a simplified Real RAM model of computation. In this simplified model, “truly
real” numbers are subject only to the unit-time operations: addition/subtraction and comparison.
In all other respects, the machine behaves like a w = O(logn)-bit word-RAM with the standard
repertoire of unit-time AC operations, such as bitwise Boolean operations, and left and right
shifts.

In Chapter 5, we use the standard Real RAM model, which includes also multiplication and
subtraction of real numbers as unit-time operations. For more details on the Real RAM model

(also known as the uniform model) see Preparata and Shamos [136, Page 28|.

Notations. The following are useful notations we use throughout the thesis. Additional notati-
ons that are more problem-specific are defined within the corresponding chapters where they are

applied.
e We denote by [N] = {1,...,[N]}, the set of the first [V] natural numbers, for any N € R*.
e For a point p € RY, we denote by p[k] the k-th coordinate of p, for k € [d].
e The O(-) notation is similar to the standard O(-) notation, but hides polylogarithmic factors.

e In the context of matrix multiplication, w denotes the exponent of multiplying two square
matrices of the same size. That is, two n x n matrices can be multiplied in O(n*) time. The

current best known bound for w is w < 2.373 [125]
e Given an algorithm A with runtime 7'(n) on an input of size n, we say that

— T (resp., A) is strongly subquadratic iff T(n) = O(n?~¢), for some ¢ > 0.
— T (resp., A) is mildly subquadratic iff T(n) = o(n?) and T'(n) = w(n?~¢), for every € > 0.
A typical mildly subquadratic bound is O (n?/polylog(n)).

— Analogously to the above, we use the terms strongly subcubic and mildly subcubic, with

exponent 3 instead of 2.

2.2 Techniques

We present here techniques that will repeatedly appear in most of our results in Chapter 3 and
Chapter 4. Other techniques that are more problem-specific will be described within the corre-

sponding chapters where they are applied.

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 13

The Four Russians. In our algorithms in Chapters 3 and 4, we use variants of the so-called
“Method of the Four Russians” [20] (named after the cardinality and nationality of its inventors),
which sometimes can be exploited to improve algorithms that involve a matrix structure, such as
dynamic programming algorithms. This method was originally used to improve the computation of
the transitive closure of a graph. Since then it was adapted to improve many other algorithms, and
in particular to improve running times by polylogarithmic factors. The basic idea is to decompose
an n x n matrix into (n/g)? small sub-matrices (boxes), each of size g x g. Then the hard challenge
is to find a way to efficiently solve a corresponding sub-problem in each of these boxes, and obtain
the solution for the original problem by combining the answers from the sub-problems, achieving
an overall improved runtime. Usually a preprocessing is carried out to help us solve each of the
small subproblems in a more efficient way. Since in many cases the preprocessing procedure takes
exponential time, the improvement is typically conditioned to choosing the parameter g to be quite

small, such as a suitable fractional power of logn.

Fredman’s Technique for All-Pairs-Shortest-Paths and Sorting X + Y. Computing
(min, +)-matrix multiplication (also known as (min, +)-product) is one of the most studied pro-
blems in algorithm design, gaining its popularity by being closely related to computing all-pairs-
shortest-paths (APSP) in real-weighted directed graphs. Formally, let A and B be n xd and d xn
real-valued matrices, respectively. The (min, +)-product of A by B is the n x n matrix C' whose
elements are given by

Cij = lglkigd {air + bi;}, fori,je|[n].

Naively, this can be computed in O(dn?) time. A weighted directed graph on n vertices can be
encoded as an n x n matrix W = (w; ;) in which w; ; is the weight of edge (4, 7) if it exists, w; ; = 0,
and w; ; = +00 otherwise. It is easy to see that the matrix W™, the n-th power of W with respect
to (min, +)-product, contains the distances between all pairs of vertices in the graph (assuming
there a no negative cycles). Clearly, W™ can be computed by executing [logn| (min, +)-products.
In fact, it is possible to compute W" in essentially the same time required for just one (min, +)-
product (see Aho et al. [10, Section 5.9]). To this date it is a prominent open problem whether
this matrix can be computed in O(n3~¢) time, for some & > 0.

Fredman showed, in a classical article from 1976 [93], that the number of comparisons needed
to compute the (min, +)-product of two n x n real-valued matrices is significantly smaller than
n3, and also showed the first algorithm for this problem that runs in mildly subcubic runtime.
Specifically, Fredman showed that the 4-linear decision tree complexity of the (min, +)-product
problem is only O(n?®). He then used this decision tree coupled with the Four Russians technique
to “shave” polylogarithmic factors off the naive cubic runtime bound. Since Fredman’s pioneering

technique is a basic component in our approach, we briefly overview his result for (min, +)-product.

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 14

Given two n x n real-valued matrices A and B, our goal is to compute the (min, +)-product
matrix C' of A by B. (We assume here that both matrices are of size n x n, ie., d = n, for
simplicity.) First, we partition the (min, +)-product problem into smaller subproblems. Let g < n
be some parameter that we will fix later. Assume for simplicity that n/g is an integer. We partition

the matrix A into n/g smaller matrices Aq,..., A each of size n x g (i.e., n rows and g columns),

n/g»
and we partition the matrix B into n/g matrices By, ..., B, ,, each of size g x n (i.e., g rows and
n columns). For each i, j € [n/g], let A;[¢, -] be the set of elements in the ¢-th row of A;, and let
B,[-,m] be the set of elements in the m-th column of B;.

We sort the pairwise difference set A;[¢,-] — A;[(,-] = {a — ad' | a,a’ € A;[L,]}, for every £ € [n].

Then we merge these sorted sets, obtaining the sorted sets

S;={a—d |a,a € A;[t,"], for some (€ [n]},
for each i € [n/g]. Similarly, we obtain the sorted sets

T; ={b—V | bt € B;[,m], for some m € [n]},

for each j € [n/g]. In total, for all matrices A; and Bj, this cost O(n/g - ng*logn) = O(n?glogn)
comparisons. Fredman [93] showed that it actually costs only O(n?g) comparisons, removing the
logn factor, by using geometric arguments that we omit here, but explain in Chapter 3. Finally,
we merge the sorted sets S; and T;, over all i € [n/g]. Overall, this takes O(n?g) comparisons.
Let Cy be the (min, +)-product of Ay by By, for each £ € [n/g]. In order to compute the entries
of Cp, we want to know the answers to comparisons of the form a; + by ; < a;p + by j, where

k,K' € [g], 7,7 € [n]. Observe that
a; k + bk’j < Q) + bk/yj = Qg — Ak < bk/yj — bk’j. (21)

The main point in “Fredman’s trick” is that we have already computed the comparison on the right
side of (2.1). Therefore, we can now compute the n/g (min, +)-products matrices Cy, for each pair
Ag, By, € € [n/g], without using any further input comparisons (that is, comparisons that access
the entries in A, B).

To compute the entry ¢, ; of the (min, +)-product matrix C, we take the minimum value among
the (4, j)-entries of the (min, +)-product matrices C1, ..., C,, /4. For each entry (7, j) € [n]x[n] of C,
this costs O(n/g) comparisons. Thus, in total, this step costs O(n? - n/g) = O(n®/g) comparisons.
Hence, the overall number of comparisons needed is O(n2g+n?/g). This is minimized when g = y/n,

and we obtain that the number of comparisons is O(n??®)

. Since we compare linear expressions,
each of at most 4 terms, the 4-linear decision tree complexity of this problem is O(n?).

Fredman [93] also showed how to apply his O(n?-)-depth decision tree in order to break the

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 15

cubic runtime bound of computing (min, +)-product of two n x n matrices (and thus of APSP).
The idea behind his approach is to partition each of the matrices A and B into (n/g)? disjoint
submatrices (boxes), each of size g x g. It is easy to show that the (min,+)-product of A by B
can be obtained by solving (n/g)? (min, +)-products between such boxes. This computation is
done by implicitly constructing the the decision tree described above, but for matrices of size g x g.
Naively, constructing the tree cost O (2-‘72'5> time. Using this tree we can solve each such (min, +)-
product of two g x g matrices by running through the tree in O(g*?®) time (the depth of the tree).
Overall, we obtain an O (292'5 + n3/\/§) runtime. Choosing g = log?°n gives O(n3/log"® n)
time. Fredman actually gave the better runtime bound O (nz(log log n)l/ 3/ logl/ 3 n), by showing
a faster construction of the decision tree. However, we omit this construction here and refer the
reader to [93] for details.

Another core problem that Fredman studied is “sorting X + Y. That is, given two sets of n
real numbers XY, sort the set X +Y ={x+y |z € X, y € Y}. It is still a prominent open
problem whether there exists a faster algorithm than the ©(n?logn)-time naive algorithm. Using
“Fredman’s trick” combined with geometric arguments, Fredman [92] showed (also in 1976) that

the 4-linear decision tree complexity of this problem is O(n?).

Remark. Recently, in a fascinating breakthrough by Kane, Lovett, and Moran [114], the above
decision tree bounds were significantly improved, using different techniques. In particular, they
showed that the 8-linear decision tree complexity of computing (min, +)-product (or APSP) is
only O(n?log?n), and this complexity is only O(nlog?n) for sorting X+Y. They also showed (by
using similar techniques) that the 6-linear decision tree complexity of 3SUM is only O(n log? n);
this significantly improved (in a bit stronger model) our O(n*?) randomized 4-linear decision tree
complexity bound from Chapter 3 (which improved the O(n®?2y/logn) bound of Grgnlund and
Pettie [104]). See [114] and Chapter 3 for more details.

Generalized Fredman’s Trick. In our improved DTW and GED algorithms in Chapter 4 we
extend Fredman’s trick to a more general setting of two linear expressions. The generalized trick

is that

a;—by+ - +a,—b, <ay —b +--+a;— b, (2.2)
if and only if

al_i'_..._i'_a/r_a/l_..._a;<b1+...+br_b/1_..._b2_ (2.3)

Here too, sorting separately the left-hand expressions and the right-hand expressions in inequa-
lities of the form of (2.3) allows us to obtain, at no extra cost in the linear decision tree model, the

results of the comparisons in the inequalities of the form of (2.2). See Chapter 4 for more details.

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 16

Chan’s Dominance Reporting Technique. Chan [53] introduced a mechanism that combines
Fredman’s trick with a geometric domination technique (see below), which he initially used for
improving the time complexity of APSP by an additional polylogarithmic factor. Later, Bremner
et al. [37] used this Fredman-Chan mechanism to improve decision tree complexity bounds and
polylogarithmic runtime factors, for restricted variants of sorting X + Y and 3SUM, as well as
other problems. Similarly, Grgnlund and Pettie [104] used this combined mechanism to obtain an
O(n?/ polylog(n))-time 3SUM algorithm.

Given a finite set P = {py,...,pn} of points in R? such that each point is colored red or
blue, the bichromatic dominating pairs reporting problem is to report all the pairs (i,j) € [n]?
such that p; is red, p; is blue, and p; dominates p;, i.e., p; is greater than p; at each of the d
coordinates. A standard divide-and-conquer algorithm by Preparata and Shamos [136, p. 366]
runs in O(|P|log? |P| + K) time, where K is the output size. Chan [53] provided an improved
runtime analysis for this algorithm that yields a strongly subquadratic time bound in the number
of points (excluding the cost of reporting the output) when the dimension is d = O(log |P|), with

a sufficiently small constant of proportionality.

Lemma 2.2.1 (Chan [53]). Given a finite set P = {p1,...,pn} of points in R such that each
point is colored red or blue, one can report all pairs (i,7) € [n]?, such that p; is red, p; s blue, and
pilk] > pj[k] for every k € [d], in time O(c?|P|'*¢ + K), where K is the output size, € € (0,1) is

an arbitrary prespecified parameter, and c. = 2°/(2¢ — 1).

Throughout this thesis, we invoke Lemma 2.2.1 many times, with ¢ = 1/2,¢. ~ 3.42, and
d = dlogn, where & > 0 is a sufficiently small constant, chosen to make the overall running time
of all the invocations dominated by the total output size. In other words, in this case the runtime
of Chan’s procedure is linear in the output size, with a strongly-subquadratic overhead. Another
recent work by Chan [54] gives an efficient (linear in the output size, with a subquadratic overhead,
but not strongly subquadratic as before) dominance reporting algorithm for dimensions slightly
larger, up to d = O(log® n/(loglogn)?). Unfortunately, due to other bottlenecks in our algorithms,
this improved algorithm does not improve the overall runtime of our results.

Since we invoke the algorithm from Lemma 2.2.1 many times throughout this thesis, we feel it
is important to mention that the algorithm is quite simple, thereby its runtime complexity does
not involve large constants nor subtle implementation. For the sake of completeness we provide

here the algorithm and the proof for Lemma 2.2.1.

The Divide-and-Conquer Algorithm. Given a finite set P = {p1,...,p,} of red/blue
points in R?, the divide-and-conquer algorithms works as follows. If d = 0, simply report every
pair of red/blue points, so assume d > 1. Find the median h on the values of last coordinate (the

d-th coordinate) of the n points in O(n) time [36]. Partition P into two disjoint sets Pp, Pg, each

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 17

of size at most [n/2], where

Pp ={pe P |pld] <h}

Pr={pe P |pld] > h}.

If (p;,pj) is a dominating pair, then either both p;, and p; are in Py, or both are in Pg, or one
(the blue point) is in Py, and the other (the red point) is in Pg. By executing three corresponding
recursive calls we find the dominating pairs of each of the three kinds. Two recursive calls, each
on at most [n/2] points in R?, are on all points in P, and all the points in Pg, respectively. The
third recursive call is on all blue points in Py, and all red points in Pg, after stripping their last
coordinate d; that is, at most n points in R?~1.

Excluding the cost of reporting the output, the runtime of this algorithm is bounded by Ty(n),

where

To(n) = Ta(1) =0

Td(n) < 2Td(n/2) + Td_l(n) + yn,

for some constant v € R. Put € € (0,1), and ¢, = 2¢/(2° — 1). We prove by induction that
Ta(n) < c?n'*te —~n. Clearly, this bound holds for Ty(n) and T,(1). Assume that the bound holds
for Ty (n), for all ' < d, and for Ty(n'), for all n’ < n. Then

Ty(n) < 2(c2(n/2)" —n/2) + (¢ 'n'te —yn) +yn
= (c?/2° + 7Y n'te —m
= (1/2° + 1/c.) cin'te —n
= cntte —qn.

This completes the proof of Lemma 2.2.1. O

Fractional Cascading. Fractional cascading was introduced by Chazelle and Guibas [60, 61],
for solving the iterative search problem, defined as follows. Let U be an ordered universe of keys.
Define a catalog as a finite ordered subset of U. Given a set of k catalogs C1,Cs,...,Cy over U,
such that |C;| = n; for each i € [k], and Zle n; = n, the iterative search problem is to provide a
data structure that supports efficient execution of queries of the form: given a query x € U, return
the largest value less than or equal to z in each of the k catalogs.

Fractional cascading lets one preprocess the catalogs in O(n) time, using O(n) storage, and
answer iterative search queries in O(logn + k) time per query, improving upon the naive time

bound O(klogn). This is essentially optimal in terms of query time, storage size and preprocessing

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 18

time. The idea is to maintain a sufficient number of pointers across catalogs, so that, once we have
the answer ¢; to a query in a catalog C;, we can follow a pointer to an element in C;1, which is
only O(1) indices away from the answer ¢;;1 € C;41. These pointers are constructed by processing
the catalogs in reverse order, starting from Cj and ending in C;. For i =k — 1,k —2,...,1, we
copy every r-th element of C;,; into C;, where r is some small constant (catalog C;; is already
augmented by copies of elements from higher-indexed catalogs, except catalog Cf). Then, knowing
the location of the query x in some C;, we can easily retrieve the two copied elements of C;1
for which « lies in between, and use this data to limit the search in C;;; to only r consecutive
elements.

For our 3SUM decision tree, described in Section 3.6, we develop a specialized fractional cas-
cading data structure, based on an unusual randomized variant of fractional cascading in a grid.
We believe that our technique might be useful for other problems that involve iterative search in

a grid/matrix structure. The detailed description of our technique will be given in Chapter 3.

Chapter 3

3SUM, k£-SUM, and

Linear Degeneracy

19

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 20

3.1 Background

The general 3SUM problem is formally defined as
3SUM: Given a finite set A — R, determine whether there exist a, b, ¢ € A such that a+b+c = 0.

An equivalent variant is that the input consists of three finite sets A, B, C' = R of the same size,
and the goal is to determine whether there are elements a € A, be B, ce C such that a+b+c = 0.
When the sets A, B, C are not of the same size, the problem is named unbalanced 3SUM.

The 3SUM problem and its variants are among the most fundamental problems in algorithm
design. Although the 3SUM problem itself does not seem to have many compelling practical
implications, it has been of wide interest due to numerous problems that can be reduced from it.
The notion of 3SUM-Hardness is often used to describe such problems, namely, problems that are
at least as hard as 3SUM. Thus, lower bounds on 3SUM imply lower bounds on dozens of other
problems. Among them are fundamental problems in computational geometry [11,27,95, 145],
dynamic graph algorithms [5,122,137], triangle enumeration [6,122], and pattern matching [17,18,
47,64,122,153].

By the time hierarchy theorem [105], there are problems in P with complexity Q(n*) for every
fixed k. However, given a problem in P, proving an €(n*) unconditional lower bound, for any
specific k > 1, seems far beyond the state of the art in computational complexity theory. This has
led researchers to settle on conditional lower bounds, based on the conjectured hardness of certain
archetypal problems, such as 3SUM, (min, +)-matrix multiplication, and CNF-SAT. See [4-6,17,
23,27,38,63,95,113,122,137,138,142,153,156] for many examples of such conditional lower bounds.

In the last decades, starting with a study of Gajentaan and Overmars [95], it was conjectu-
red that any algorithm for 3SUM requires Q(n?) time. However, a fairly recent breakthrough by
Grgnlund and Pettie [104] showed that 3SUM can be solved in subquadratic time. Specifically,
they gave a deterministic algorithm that runs in O(n?(loglogn/log n)2/ 3) time, and a randomized
algorithm that runs in O(n?(loglogn)?/logn) expected time and with high probability. Further-
more, they showed that there is a 4-linear decision tree for 3SUM with depth O(n*?y/logn) (i.e.,
the depth bounds the number of branching operations, each one is based on a sign test of a li-
near expression with at most 4 terms). These results raised serious doubts on the optimality of
many algorithms for 3SUM-Hard problems. For example, the following problems are known to be

3SUM-Hard.

1. Given an n-point set in R?, determine whether it contains three collinear points (Gajentaan

and Overmars [95]). See Chapter 7 for a discussion on this problem.

2. Given n triangles in R?, determine whether their union contains a hole, or compute the area

of their union [95].

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 21

3. Given two n-point sets X,Y < R, each of size n, determine whether all elements in X +Y =

{x+y|zeX, yeY} are distinct (Barequet and Har-Peled [27]).

4. Given two n-edge convex polygons, determine whether one can be placed inside the other via

translation and rotation [27].

Problems 1 and 2 are solvable in O(n?) time (see [95]). Problems 3 and 4 are solvable in O(n? logn)
time (see [27]). In face of the new 3SUM result of Grgnlund and Pettie [104], it is natural to ask
whether these bounds are optimal. However, no better bounds are currently known (in spite of the
improvement in [104]). Problem 3 (or its stronger variant of sorting X +Y) has special importance,
as it is used for basing the conditional lower bounds for the problems in [27] and in [108]; these
problems are therefore also classified as “(Sorting X + Y)-Hard”. It is a prominent long-standing
open problem whether Problem 3 can be solved in o(n?logn) time (see [72]). As mentioned
Section 2.2, in a recent breakthrough by Kane, Lovett, and Moran [114] it was showed that the 8-
linear decision tree complexity of Sorting X + Y is only O(nlog? n), significantly improving (albeit
under a somewhat stronger model) Fredman’s O(n?) 4-linear decision bound from 1976 [92]. Yet,
it is still a prominent open question whether there exists an algorithm that runs faster than the
naive ©(n?logn) algorithm. Unlike many other problems, even improvements by polylogarithmic
factors are unknown for this problem.

In view of the results in [104], the 3SUM conjecture has been replaced by a relaxed, modern
variant, asserting that 3SUM cannot be solved in strongly subquadratic time (even in expectation),
i.e., in O(n?7¢) time, for any ¢ > 0. This conjecture is widely accepted and believed by the
computer science community, and so are its implications for deriving conditional lower bounds
for other problems. Abboud and Vassilevska-Williams [6] argue, based on the collective computer
science community efforts, that lower bounds that are based on the relaxed 3SUM conjecture should
be at least as believable as any other known conditional lower bounds for a problem in P.

This relaxed conjecture is often applied to a more restricted variant, Integer3SUM, which is

defined as follows.

Integer3SUM: Given a finite set A € {-U,...,U} c Z, determine whether there exist a, b, c €
A such that a + b+ ¢ = 0.

Based on the conjecture that Integer3SUM requires Q(n>~°()) time, Pétragcu [137] proved lower
bounds on triangle enumeration and on various problems in dynamic data structures. Recently,
the reduction techniques of Patragcu were extended by Kopelowitz, Pettie, and Porat [122], im-
plying improved lower bounds for this kind of problems. Examples for lower bounds based on this

conjecture include the following:

— Given an undirected m-edge graph, enumerating up to m triangles (3-cycles) requires at least

CHAPTER 3. 3S5UM, K-SUM, AND LINEAR DEGENERACY 22
Q(m*3=°W) time (Patragcu [137]).!

— Given a sequence of m updates to a directed graph (edge insertions and deletions) and two
specified vertices s, t, determining whether ¢ is reachable from s after each update, requires

at least Q(m*3~°M)) time (Abboud and Williams [5]).

— Given an edge-weighted undirected graph, deciding whether it contains a zero-weight triangle,

requires at least Q(n3=°() time (Williams and Williams [157]).

The Integer3SUM problem is clearly not harder than 3SUM; however, any other relationship
between them is unknown. Unlike 3SUM, Integer3SUM can be solved using fast Fourier transform
in O(n + UlogU) time, which is subquadratic even for a rather large universe size U.? Baran,
Demaine, and Péatragcu [25] showed that using randomized universe reductions, word packing,
and table lookups, Integer3SUM can be solved in O(n?(loglogn/logn)?) expected time and with
high probability, on the word-RAM, where U = 2% and w > logn is the machine word size.
Recently, Chan and Lewenstein [56] showed, based on results from additive combinatorics, strongly
subquadratic time algorithms for special restricted cases of Integer3SUM.

The 3SUM problem was also extensively studied in its generalized forms, k-SUM and k-variate

linear degeneracy testing (k-LDT), formally defined as

k-LDT and k-SUM: Given a k-variate linear function f(z1,...,zr) = ap + Zle a;x;, where
Qg, - -, € R, and a finite set A c R, determine whether there exists (z1,...,z;) € A*
such that f(x1,...,2%) = 0. When f is Zf;l x; the problem is called k-SUM(when k = 3
we get the 3SUM problem we started with).

There are simple algorithms that solve k-LDT in time O(n*+1)/2) when k is odd, or O(n*/?logn)
when k is even; see [12]. These algorithms are based on straightforward reductions to a 2SUM
problem or to an unbalanced 3SUM problem, depending on whether k is even or odd, respectively.
These are currently the best known upper bounds for the running time of solving k-LDT. Erick-
son [85] showed that, for an even k, there is a k-linear decision tree with depth O(n*/?), removing
an O(logn) factor when comparing to the uniform model. Erickson [85] showed that any k-linear
decision tree for solving k-SUM must have depth Q(n*/2) when k is even and Q(n**+1/2) when k is
odd. In particular, any 3-linear decision tree for 3SUM has depth Q(n?). Ailon and Chazelle [12]
showed that any (2k — 1)-linear decision tree for k-SUM must have depth Q(n!*?(1).

Grgnlund and Pettie [104] showed that using only one more variable per comparison leads to a
dramatic improvement in the depth of the tree, which significantly beats the above lower bounds.
Specifically, as will be reviewed below, they showed that there is a 4-linear decision tree for 3SUM

with depth O(n*?24/Togn), and by the reduction from k-LDT to unbalanced 3SUM, they concluded

1By Kopelowitz, Pettie, and Porat [122], the exponent 4/3 is optimal if the matrix multiplication exponent w is
2 and if 3SUM requires Q(n2—°(1)) time.
2Erickson [85] credits R. Seidel with this Integer3SUM algorithm (taken from [104]).

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 23

that there is a (2k — 2)-linear decision tree for k-LDT with depth O(n*/?y/Iogn), for any odd k > 3.
Cardinal, Tacono, and Ooms [50] showed that if we allow arbitrarily many variables in a comparison
(polynomial in n), then the linear decision tree complexity of k-SUM and k-LDT is O(n®log® n).
This bound was improved by Ezra and Sharir [87] to O(n?log®n).

A recent breakthrough by Kane, Lovett, and Moran [114] significantly improves these results,
giving near optimal bounds by showing a 2k-linear decision tree with depth only O(n log? n). Their
decision tree bound is one logarithmic factor away from the well-known Q(n logn) algebraic decision
tree lower bound of Element-Uniqueness [31], which can be easily reduced to k-SUM. Their usage

1+2(1)) Jower bound

of 2k variables is optimal, since for (2k — 1)-linear decision tree there is an (n
by Ailon and Chazelle [12].

Apart from the many lower bounds obtained from the conjectured hardness of 3SUM and its
variants, in recent years, many lower bounds were obtained also from two other plausible conjectu-
res. The first is that computing the (min, +)-product of two n x n matrices takes Q(n3~°(1) time
(aka APSP-Hardness); see for examples [5,6,156]. The second is that CNF-SAT takes Q(2(1—°(1)n)
time. The latter is often referred to as the Strong Exponential Time Hypothesis (SETH) [110,111].
A natural question is whether any of these conjectures (3SUM, SETH, APSP) are in fact equivalent,
or whether they all derive from a basic unifying hypothesis. At the current state of knowledge,
there is no strong relationship between any pair of these problems, so it may be possible that
any one of them could be true or false, independently of the status of the others. A recent bre-
akthrough by Carmosino et al. [51] provides evidence that such a relationship is unlikely, based on

a nondeterministic variant of SETH; see [51] for details.

3.2 Summary of Our Results and Related Work

The following theorems capture our main results.
Theorem 3.2.1. The randomized 4-linear decision tree complexity of 3SUM is O(n3/?).

Theorem 3.2.2. The randomized (2k — 2)-linear decision tree complexity of k-SUM and of k-LDT
is O(n*/?), for any odd k = 3.

Theorem 3.2.3. 3SUM can be solved deterministically in O(n?loglogn/logn) time.

Theorem 3.2.1 and Theorem 3.2.2 improve (albeit in a randomized setting) the respective
O(n*?\/log n)-depth and O(n*/2y/logn)-depth decision trees given by Grenlund and Pettie [104].
The aforementioned recent breakthrough by Kane, Lovett, and Moran [114] gives a 6-linear decision
tree for 3SUM with depth O(nlog2 n), and in general, a 2k-linear decision tree for k-SUM, and a
(2k 4 2)-linear decision tree for k-LDT, both with depth O(knlog?n). Viewing our (and Grgnlund
and Pettie’s) k-SUM results for (2k — 2)-linear decision tree, with respect to Erickson’s Q(nl*/21)

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 24

k-linear decision tree lower bound, and the 2k-linear decision upper bound by Kane, Lovett, and
Moran [114], shows that even adding only 1 or 2 terms to each linear comparison, can significantly
improve the depth of the tree.?

Our technique for proving Theorems 3.2.1 and 3.2.2 includes a specialized data structure, based
on an unusual randomized variant of fractional cascading in a grid.

In Theorem 3.2.3 we give an actual deterministic algorithm for 3SUM that runs (in the uni-
form model) in O (n?loglogn/logn) time. The latter improves the O(n?(loglog n/logn)?3)-
time bound of Grgnlund and Pettie [104], and matches the bound given by a recent independent
work of Freund [94]. Both algorithms, Freund’s and ours, have common high-level ideas, but
ours makes a better use of the word-RAM model, and is hence somewhat simpler. * Recently,
Chan [55] further improved this bound by presenting a deterministic algorithm for 3SUM that runs
in O (n?(loglogn)°® /(log n)?) time.

3.3 The Quadratic 3SUM Algorithm and Search-Contours

We give a brief overview of the quadratic-time algorithm. We follow the implementation given by
Grgnlund and Pettie [104], which is slightly different from the standard approach, but is useful
for the explanation of the results of [104] and of this chapter. For later references, we present
the algorithm for the more general three-set version of 3SUM, as defined in the first paragraph of
Section 3.1.

The algorithm runs over each ¢ € C' and searches for —c in the pairwise sum A + B. With a
careful implementation, given below, each search takes O(|A| + |B|) time, for a total of O(|C|(|A| +
|B|)) time. We view A + B as being a matrix whose rows correspond to the elements of A and
columns to the elements of B, both listed in increasing order. To help visualizing some steps of
the algorithms, we think of the rows arranged in increasing order from top to bottom, and of the

columns from left to right.

1. Sort A and B in increasing order as A(0),...,A(]4| — 1) and B(0),...,B(|B|—1).
2. For each ce C,

2.1. Initialize lo « 0 and hi < |B| — 1.

2.2. Repeat:

2.2.1. If —¢ = A(lo) + B(hi), report witness “(A(lo), B(hi), ¢)”.

2.2.2. If —¢> A(lo) + B(h) then increment lo, otherwise decrement hi.

2.3. Untillo = |A] or hi = —

3. If no witnesses were found report “no witness.”

3We note that our results have been obtained and published long before the results of Kane, Lovett, and Mo-
ran [114]; see an initial arXiv version of our work in [101].

4The independent result of Freund [94] was brought to our attention after the completion of an initial version
our work; see arXiv version of our work in [101].

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 25

372 | 389 | 407 | 439 | 454 | 480 | 534 | 609 | 635 | 655
397 | 414 | 432 | 464 | 479 | 505 | 539 | 634 | 660 | 680
420 | 437 | 455 | 487 | 502 | 528 | 582 | 657 | 683 | 703
442 | 459 | 477 | 509 | 524 | 550 | 604 | 679 | 705
478 | 495 | 513 | 545 | 560 | 586 | 640 761
500 | 517 | 535 | 567 | 582 | 608 | 662 | 737 | 763 | 783
523 | 540 | 558 | 590 | 605 | 631 | 685 | 760 | 786 | 806
548 | 565 | 583 | 615 | 630 | 656 785 | 811 | 831
994 | 611 | 629 | 661 | 676 | 702 | 756 | 831 | 857 | 877
627 | 644 | 662 | 694 | 709 789 | 864 | 890 | 910

Figure 3.3.1: The sky-blue colored entries form CONTOUR(710), and the purple colored ones form
CONTOUR(558); A shared cell is shown in green. The lighter colors (light purple and light sky-blue)
depict their partial contour, that is, the positions of the contours where we chose to increase the lo
index (“go down") in the matrix while searching our element. All the elements in the matrix whose
values are in [558,710) are enclosed between these two contours, excluding the partial contour of 558
and including the partial contour of 710.

The correctness easily follows from the fact that each row and column of A 4+ B is sorted in
increasing order. Note that when a witness is discovered in Step 2.2.1, the algorithm can stop
right there. However, in order to simplify future definitions and explanations, this implementation
continues to search for more witnesses. After finding a witness we will always choose to decrement
hi. This choice will be made throughout this chapter.

Define the contour of 2z, CONTOUR(x, A+ B), (CONTOUR(x), when the context is clear) to be the
sequence of positions (lo, hi) encountered while searching for x in A+ B in the preceding algorithm.

Lemma 3.3.1 is straightforward.

Lemma 3.3.1. For x < y € R, CONTOUR(z) lies fully above CONTOUR(y); that is, for each

i,i',j€{0,...,n—1}, if (i,j) € CONTOUR(z) and (i’,j) € CONTOUR(y), then i < i'.

By Lemma 3.3.1 a pair of contours can overlap, but never cross. Moreover, Lemma 3.3.1 implies
a weak total order relation < on the contours, which corresponds to the order between the searched
elements, such that < y iff CONTOUR(z) < CONTOUR(y), where the latter relation means that

the two contours satisfy the properties stated in the lemma; see Figure 3.3.1.

3.4 Fredman’s Trick, Pairwise Sums, and
Fractional Cascading

We give an overview of the techniques we use in this chapter. This includes techniques from

Fredman’s prominent works from 1976 [92,93], some of which were also discussed in Section 2.2.
For our result, we will develop a special randomized variant of fractional cascading (Chazelle and

Guibas [60,61]). In this section we also briefly review the standard fractional cascading method,

to set the infrastructure upon which we will later develop our specialized variant.

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 26

Recall Fredman’s trick described in Section 2.2: the trivial observation that a +b < o’ + b iff
a—a <b —b We will liberally exploit this observation (trick) throughput this chapter.

Fredman showed that, given n numbers whose sorted order is one of II < n! realizable permuta-
tions, they can be sorted using a linear number of comparisons when II is sufficiently small. More

generally, we have:

Lemma 3.4.1 (Fredman 1976 [92]). A list L of n numbers, whose sorted order is one of I possible

permutations, can be sorted with 2n + logIl pairwise comparisons.

Sorting Pairwise Sums and its Geometric Interpretation. Fredman describes the relation
between the complexity of hyperplane arrangements and the decision tree complexity of sorting
pairwise sums. Grgnlund and Pettie [104] use similar arguments in their 3SUM decision tree, where
they sort pairwise sums. Specifically, given two sets A = {a1,...,a,} and B = {by,...,b,}, each
of n (distinct) real numbers, define the pairwise sum A + B = {a; + b, | 4, j € [n]}. The input A, B

can be regarded as a point p = (ai,...,an,b1,...,b,) € R?". The points in R?" that agree with

nZ

5) hyperplanes

a fixed permutation of A + B form a convex cone bounded by the set H of the (
i +y; —xp—y =0, fori,j,k,l e [n], (1,j) # (k,1). The number of possible sorted orders of
A+ B is therefore bounded by the number of regions (of all dimensions) in the arrangement A(H)
of H. As shown by Buck [44], the number of regions of dimension k < d in an arrangement of m

hyperplanes in R? is at most

) () () e ()

Thus, the number of regions of all dimensions is O(m?) (where the constant of proportionality
is actually independent of d). Hence, the number of possible sorting permutations of A + B is
(0] ((n4)2”) = O(n®"). One can also construct the hyperplane arrangement explicitly in O(m?)
time by a standard incremental algorithm [76]. The following lemma, taken from Grgnlund and
Pettie [104], extends this analysis by considering only a subset of these hyperplanes, and is an

immediate consequence of these observations.

Lemma 3.4.2. Let A = {a1,...,a,} and B = {by,...,b,} be two sets, each of n real numbers,

and let F < [n]? be a set of positions in the n x n grid. The number of realizable orders of
2

(A+ B)p :={a; + b; | (i,7) € F} is O((‘gl) n), and therefore (A + B)|p can be sorted with at

most 2|F| + 4nlog |F| + O(1) comparisons.

In Lemma 3.4.2, the case F' = [n]? goes back to Fredman [92], who showed that O(n?) compa-
risons suffice to sort A + B.
For some of the algorithms presented and reviewed in this chapter, it is important to assume

that the elements of the pairwise sum are distinct, and therefore have a unique sorting permutation.

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 27

When numbers do appear multiple times, a unique sorting permutation can be obtained by breaking

ties consistently (see [104] for details).

Iterative Search and Fractional Cascading. In our decision tree construction for 3SUM, we
aim to speed-up binary searches of the same number, in many sorted sets. We will use for this task
a special randomized variant of fractional cascading, which will be described in Section 3.6. First,
we briefly recall the standard fractional cascading technique, which was introduced by Chazelle
and Guibas [60,61] and briefly reviewed in Section 2.2, for solving the iterative search problem,
defined as follows. Let U be an ordered universe of keys. Define a catalog as a finite ordered subset
of U. Given a set of k catalogs C1,Cy,...,Cy over U, such that |C;| = n; for each i € [k], and
Zle n; = n, the iterative search problem is to provide a data structure that supports efficient
execution of queries of the form: given a query x € U, return the largest value less than or equal
to x in each of the k catalogs.

Fractional cascading lets one preprocess the catalogs in O(n) time, using O(n) storage, and
answer iterative search queries in O(logn + k) time per query (as opposed to the trivial O(klogn)
bound). This is essentially optimal in terms of query time, storage size and preprocessing time.
The idea is to maintain a sufficient number of pointers across catalogs, so that, once we have the
answer ¢; to a query in a catalog C;, we can follow a pointer to an element in C;,1, which is only
O(1) indices away from the answer ¢; 1 € Cj11.

In order to construct these pointers query time, the fractional cascading method expands each
catalog C; to an augmented catalog L;, starting with Ly and proceeding backwards down to Ly. Ly
is the same as O}, and for each 1 < i < k, L; is formed by merging C; with every second element®
of L;1+1. The items in C; that were not originally in the catalog are marked as synthetic keys.
From each synthetic key in C; we add a bridge (pointer) to its copy in L;11. Using these bridges
and additional pointers, from each real key to the two consecutive synthetic keys nearest to it, one
can follow directly from each element of L; (real or synthetic) to the elements in L;,; nearest to
it, and by construction, the gap between these elements is 2. Thus, given a query number z, after
spending O(logn) time for searching it in Ly, it takes only O(1) time to locate z in each subsequent
catalog, for a total of O(logn + k) time, as desired. With some additional simple calculations, one
can show that the total number of elements that are copied through the catalogs is only O(n), and
that the cost of doing it is also O(n).

Fractional cascading can also be extended to support a collection of catalogs stored at the
vertices of a directed acyclic graph (DAG), and each query searches with some specified element
x through the catalogs stored at the nodes of some specified path in the DAG. In more detail, a

catalog graph is a DAG in which each vertex stores a catalog (ordered list of keys). A query consists

5More generally, every r-th element, for a constant r; the choice of 7 provides a trade-off between the constants
in the storage and query time.

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 28

of a key x and a path 7 in the graph, and the goal is to search with x in the catalog of each node
of m. When the maximum in/out degree A of the catalog graph is constant, fractional cascading
can be extended to this scenario, with the same bounds as before (albeit with larger constants of
proportionality). Here too each catalog C, at a node v, is expanded into an augmented catalog
L,, and each L, passes to its predecessors every 2A-th element (instead of every second element
in the earlier case, where A was 1). See [60,61] for more details on the construction of the data
structure, proof of correctness, and performance analysis.

In our algorithms we will present a special non-standard variant of this method, that lets us

preserve the advantages of the other techniques (most notably, Fredman’s trick) that we use.

3.5 Grgnlund and Pettie’s Subquadratic Decision Tree for
3SUM

In this section we give an overview of the subquadratic decision tree of Grgnlund and Pettie [104].
In the following sections we show how their ideas can be extended and combined with additional
techniques, to yield our improved results.

We give an overview of the subquadratic decision tree for 3SUM over a single input set A of
size n, taken from [104], resulting in a 4-linear decision tree with depth O(n%2y/logn). This is
shown by an algorithm that performs at most O(n3/ 2/logn) comparisons, where each comparison

is a sign test of a linear expression with at most 4 terms.

1. Sort A in increasing order as A(0),...,A(n — 1). Partition A into [n/g] groups
Ai, ...y Alnyg, each of at most g consecutive elements, where g is a parameter that we
will fix later, by setting A; := {A((¢ — 1)g),..., A(ig — 1)}, for each i = 1,...,[n/g] — 1,
where A[, /4] may be smaller. The first and last elements of A; are min(A;) = A((i —1)g)
and max(A4;) = A(ig — 1).

2. Sort D :=c[nsq) (Ai — 4i) = {a—d' | a,d’ € A; for some i}.

3. Foralli,je[n/g],sort A;;:=A;+A;={a+b|lacA;and be A;}.

4. For k from 1 to n,

4.1. Initialize lo < 1 and hi < [n/g].

4.2. Repeat:

4.2.1. If —A(k) € Aioni, report “solution found” and halt.

4.2.2. If max(Aj,) + min(Ap;) > —A(k) then decrement hi, otherwise increment lo.

4.3. Until lo = [n/g] + 1 or hi = 0.

5. Report “no solution” and halt.

This algorithm can be generalized in a straightforward way to solve the (unbalanced) three-set

version of 3SUM. For the easy argument concerning the correctness of the algorithm, see [104].

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 29

With a proper choice of g, the decision tree complexity of the algorithm is O(n*?/logn). Step 1
requires O(n logn) comparisons. By Lemma 3.4.2, Step 2 requires O(nlogn+|D|) = O(nlogn+gn)
comparisons to sort D. By Fredman’s trick, if a,a’ € A; and b, € Aj, a + b < ' + ' holds iff
a—a' <l — b, and both sides of this inequality are elements of D. Thus, Step 3 does not require
any real input comparisons, given the sorted order on D. For each iteration of the outer loop (in
Step 4) there are at most 2[n/g| iterations of the inner loop (Step 4.2), since each iteration ends
by either incrementing lo or decrementing hi. In Step 4.2.1 we can determine whether —A(k) is in
Ao ni using binary search, in log [A, ni| = O(log g) comparisons. The total number of comparisons

is thus O(nlogn + gn + (n?logg)/g), which becomes O(n*?y/logn) when g = \/nlogn.

3.6 Improved Decision Trees for 3SUM, k-SUM, and k-LDT

In this section we show that the randomized decision tree complexity of 3SUM is O(n%/?), and more
generally, that the randomized decision tree complexity of k-LDT is O(n*/?), for any odd k > 3.
This bound removes the O(y/logn) factor in Grgnlund and Pettie’s decision tree bound (albeit
under a randomized decision tree model). We show this result by giving a randomized algorithm
that constructs a (2k — 2)-linear decision tree whose expected depth is O(n*/?).

To make the presentation more concise, we present it for the variant where we have three
different sets A, B, C' of n real numbers each, and we want to determine whether there exist a € A,
be B, ce C, such that a+ b+ c=0.

As in the previous section, we partition each of the sorted sets A and B into [n/g] blocks, each
and By,...,B

consisting of g consecutive elements, denoted by Aq,..., A respectively. As

n/g> n/g>

above, but with a slightly different notation, we consider the n x n matrix M = M4 whose rows
(resp., columns) are indexed by the (sorted) elements of A (resp., of B), so that M (k,{) = ay + by,
for k,¢ € [n]. The partitions of A and of B induce, as before, a partition of M into n?/g? boxes
M; ;, for i,j € [n/g], where M; ; is the portion of M with rows in A; and columns in B;.

Fredman’s trick, combined with Lemma 3.4.2, allows us to sort all the boxes M; ; with O(ng)
comparisons. Since the problem is fully symmetric in A, B, C, we can also define analogous
matrices M4 and M B¢, constructed in the same manner for the pairs A, C and B, C, respectively,
partition each of them into n?/g? boxes, and obtain the sorted orders of all the corresponding boxes,
with O(ng) comparisons.

The crucial (costliest) step in Grgnlund and Pettie’s algorithm, which we are going to improve,
is the searches of the elements of —C in MAB. For each ¢ € C, let o(c) = CONTOUR(—c) denote
the staircase path contour of —c¢, as defined before Lemma 3.3.1. The length of o(c) is thus at
most 2n. Each of the paths o(c) visits some of the boxes M; ;, and the index pairs (i, j) of these
boxes also form a staircase pattern, as in the preceding sections. The number of boxes that a

contour o(c) visits is at most 2[n/g|. For each ¢ € C, the sequence of boxes that o(c) visits can be

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 30

obtained by invoking (an appropriate variant of) Step 4 of the algorithm in Section 3.5, excluding
the binary search in Step 4.2.1. The total running time of this step, over all c € C, is O(n?/g).
The paths o(c), being contours, have the structure given in Lemma 3.3.1, including the weak

total order < between them. Thus, we obtain the following.

Corollary 3.6.1. For each box M; ;, let C;; denote the set of elements of C' whose paths o(c)

traverse M; ;. Then C; ; is a contiguous subsequence of C.

Put &, ; :=|C; ;|. Then we clearly have), kij = O(n?/g). That is, the average number

i,5€[n/g]
of elements of C that visit a box is O(g), and, for each box, these elements form a contiguous
subsequence of C, as just asserted in Corollary 3.6.1. Let C;’fj denote the contiguous sequence of
indices in C of the elements of C; ;. That is, C;; = {c, | £ € C};}. With all these observations,
we next proceed to derive the mechanism by which, for each box M; ;, we can efficiently search in
M; ; with the (negations of the) k; ; corresponding elements of C; ;.

We apply a special variant of fractional cascading. The twist is in the way in which we construct
the augmented catalogs. Note that in each box M; ;, we have g? elements of the form aj + by,
but only 2¢ indices k, . We want to sample elements from a box, and then copy and merge them
into its right and top neighbor boxes. However, in order to be able to use Fredman’s trick, we
have to preserve the property that the number of element-indices (rows and columns) in each box
stays O(g) (unlike a naive implementation of fractional cascading, where it is enough that each
augmented box be of size O(g?)).

Thus, we sample elements from A (row elements) and elements from B (column elements)

separately. We construct augmented sets A}, ..., A’[n Jal’ Starting with A’[n ol = Ap we sample

n/gl>

each element in A’[n /o] with probability p = i. Each sampled element is copied and merged

with A, /511, and we denote by A'[n Jgl-1 the new augmented set. Then we sample each element
from A’[n Jgl—1 with the same probability p, copy and merge the sampled elements with Ay, /51 _2,

obtaining A’[=25 and continue this process until the augmented set A is constructed. Similarly,

n/g
we construct the augmented sets B, .. ., Bfn Jo]’ but we do it in the opposite direction, starting from
B} = B; and ending with Bfn Jg)- Clearly, similar to standard fractional cascading, the expected
size of each of the augmented sets is O(g), as the expected numbers of additional elements placed

in each box form a convergent geometric series. Now we sort

Dy = U (A; — AY) = {a—d' | a,d € A} for some i}.
ie[n/g]

In each A} — A%, the expected number of elements ay — a is O(g?), and the expected number of
element indices k, k' is only O(g). Thus, by Lemma 3.4.2, we can sort D4 with expected O(ng)

comparisons. Similarly, we sort D = | J (B; — B;) with the same expected number of

j€ln/g]
comparisons. Then, we form the union D’ = Dy u Dp: and obtain its sorted order by merging

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 31

Dy and Dpg/. This costs additional expected O(ng) comparisons. By Fredman’s trick, from the
sorted order of D', we can obtain the sorted order of the augmented boxes A} + B;-, for each
i,j € [n/g], without further comparisons (i.e., at no extra cost in our model).

With these augmentations of the row and column blocks, the matrix M4B itself is now aug-
mented, such that each modified box M; ; = A} + B receives some fraction of the rows from the
box M;y1,; below it, and a fraction of the columns from the box M; ;_; to its left. Each box M; ;
corresponds to a vertex in the catalog graph, and it has (at most) two outgoing edges, one to the
vertex that corresponds to M;1 ; and one to the vertex that corresponds to M; j_1 (it also has at
most two incoming edges). Clearly this is a DAG with maximum in/out degree A = 2, which is
why we sampled i = i of the rows/columns in each step. We complete the construction of this
special fractional cascading data structure, by adding the appropriate pointers, similar to what is
done in a standard implementation of fractional cascading (see Section 3.4). This does not require
any further comparisons (and thus is free of cost in our model), since the pointers from synthetic
keys (the sampled elements) to real keys, and pointers from real keys to synthetic keys, depend
only on the sorted order of the augmented sets M; ;, which we already computed. So the overall
expected number of comparisons needed to construct this data structure is still O(ng).

Consider now the search with —c, for some ¢ € C'. Assume that the search has just visited
some box My j, and now proceeds to search in box M; ;. Thus, either (¢,j) = (' + 1,;') or
(i,7) = (¢',7 — 1). Assume, without loss of generality, that (i,7) = (i + 1,;’); a symmetric
argument applies when (i,j) = (¢/,5/ — 1), using columns instead of rows. In this case, the
fractional cascading mechanism has sampled, in a random manner, an expected quarter of the
rows of (the already augmented) M; ; and has sent them to My j; = M;_; ;. The output of the
search at M;_1 ;, if —c was not found there, includes two pointers to the largest element £~ of M, ;
that is smaller than —¢, and to the smallest element {* of M; ; that is larger than or equal to —c.
We need to go over the elements in the sorted order of M; ; that lie between {~ and T, and locate
—c among them. If we do not find it, we get the two consecutive elements that enclose —c, retrieve
from them two corresponding pointers to a pair of elements in the next box to be searched, that
enclose —c between them, and continue the fractional cascading search in the next box, in between
these elements.

The main difficulty in this approach is that the number of elements of M; ; between {~ and
&7 might be large, because there might be many elements between £~ and ¢+ in rows that we did
not sample, and then we have to inspect them all, slowing down the search.

Concretely, in this case we sample, in expectation, a quarter of the rows of M; ; (recall that
we actually sample the rows from an augmented box that has already received data from previous
boxes, but let us ignore this issue for now). Collectively, these rows contain (in expectation) ©(g?)
elements of M; ;, but we have no good control over the size of the gaps of non-sampled elements

between consecutive pairs of sampled ones. This is because there might be rows that we did not

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 32

60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150
160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250
260 | 270 | 280 | 290 | 300 | 310 | 320 | 330 | 340 | 350

Figure 3.6.1: An expensive step in the fractional cascading search: Assume that only the first and
third rows (appearing in gray) are sent to the preceding box (above the current one), and that we
search with —c¢ = 205. The previous search locates —c between £~ = 150 and £* = 260, say, and now
we have to examine about half of the entire second row to locate —c in the current box.

sample which contain many elements between £~ and £, and searching through such large gaps
could slow down the procedure considerably. See Figure 3.6.1 for an illustration. (For a normal
fractional cascading, this would not be an issue, but here the peculiar and implicit way in which
we sample elements has the potential for creating this problem.)

We handle this problem as follows. Consider any gap of non-sampled elements of M; ; between
a consecutive pair £~ < €1 of sampled ones. We claim that the expected number of rows to which
these elements belong is O(1). Note that this is why we needed randomization; if we sampled every
4th element in A; and B; deterministically then the rows-gap between £~ to £* could be much
larger, in all boxes M; ;; see Figure 3.6.2 for an illustration.

Indeed, the probability to have k distinct rows in such a gap, conditioned on the choice of

1(3

the row containing £, is 3 (Z)k, which follows since each row is sampled independently with

probability 1/4. Hence, the (conditionally) expected row-size of a gap is

k
> ki (i) = 0(1),
k=0
as claimed. Denote this expected value as 3. In other words, for each c € C; ;, let R. be the set
of rows that show up in the gap between the corresponding elements £~ and £ for ¢. The overall
expected size 3, .., . |Re| is thus B|C; 5.

Fix a box M; ;. For each ¢ e C;’fj and for each k € R.,, we need to locate —c; among the
elements in row k of M; ;. That is, we need to locate —c, among the elements of the set aj, + B;.
This however is equivalent to locating —ai — ¢, among the elements of B}.

We therefore collect the set S of all the sums —ay — ¢y, for £ € C;’j ; and k € R, , and recall that
in expectation we have |S| = O(|C; ;|). The crucial observation is that we already (almost) know
the order of these sums. To make this statement more precise, partition, in the usual manner, the
sorted sequence C' into [n/g] blocks C1,Cy,. .., Cl, e, each consisting of g consecutive elements
in the sorted order. As mentioned earlier, a symmetric application of Fredman’s trick allows us to
obtain the sorted order of each box of the form A} + C;, using a total of O(ng) comparisons.

The number of (consecutive) blocks C, of C that overlap C; ; is t; ; < [k ;/g] + 2. Moreover,
each sum in S belongs to —(A} + C;) for one of these ¢; ; blocks. Since each of these sets is already

sorted, we extract from them (with no extra comparisons) the elements of S as the union of ¢; ;

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 33

-100 | -99 | --- | 91 | 67 | 68 | --- | 100
49 50 | --- | B8 | 216 | 217 | --- | 260
50 oL | --- | 69 | 217 | 218 | --- | 261
90 91 | --- | 99 | 257 | 2568 | --- | 291
200 | 201 | --- | 209 | 367 | 368 | --- | 400

Figure 3.6.2: Example of a 44 x 44 box with sorted rows and columns, which is the sumset matrix
of the ordered sets {0, 149, 150, ...,190, 300} and {—100,—99,...,—91,67,68,...,100}. Say that we
searched for element 150 in the previous box, which is augmented by every 4th row of this box. Since
elements 100 and 200 are consecutive in this box, the fractional cascading mechanism locates element
150 between £~ = 100 and £+ = 200, which sit in the first and last rows of this box (in grey color),
respectively. A similar scenario can appear in all the g x g boxes, and for any choice of g, if we sample
rows (resp., columns) deterministically. Hence, we needed randomization, in order to obtain that the
rows-gap (resp., columns-gap) between £~ and £ is O(1) in expectation.

sorted sequences S; 5, where S; ; € —(A] + C;) for each s. Arguing as above, the expected size of
Si,s is B|Cs| = O(g). We now merge each of the sorted sequences S; s with B, using an expected
O(g) comparisons for each merge. As a result, each sum —a; — ¢y is located between two consecutive
elements b; , < b, of Bj. In other words, for each ¢, € C; j, we have at most |R.,| candidates
for being the largest element of M, ; that is smaller than —c, (these are the elements a; + bi_)g, for
i € R.,), and we select the largest of them, requiring no comparisons, as these are all elements of
the already sorted A} + B;-. In the same manner, we find the smallest element of M; ; that is larger
than —c¢y. Having found these two elements, we can proceed to search —¢y in the next box, using
the appropriate pointers created by the fractional cascading mechanism (see Section 3.4).

The overall number of merges is

DUotis< D (kij/g+2) =0(n/g%),
i,j€[n/g] i,j€[n/g]

and each of them costs O(g) expected comparisons, for a total of O(n?/g) expected comparisons.

Thus, the overall number of expected comparisons is O(ng + n(logg + n/g)), which is O(n*?),

when g = 4/n. This completes the proof of Theorem 3.2.1. O

k-SUM and k-LDT

The standard algorithm for k-variate linear degeneracy testing (k-LDT) for odd k > 3, is based on
a straightforward reduction to an instance of unbalanced 3SUM, where |A| = |B| = n(*~1/2 and
|C| = n; see [12] and [104]. The analysis of this section also applies for unbalanced 3SUM, and

directly implies that it can be solved by using an expected number of

O (g (|Al+ B[+ |C]) + |C((|A] + [Bl)/g + log g))

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 34

comparisons, where the first term is the cost of sorting the blocks of (the augmented) MAB MAC,
and MBC and where the second term is the cost of the fractional cascading searches. We have
|A| = |B| = n*=1D/2_|C| = n, so by choosing g = 1/, the bound becomes O(n*/?). Thus, the
randomized decision tree complexity of k-LDT (and thus of k-SUM) is O(n*/?), for any odd k > 3,
as stated in Theorem 3.2.2. O

3.7 Subquadratic Algorithms for 3SUM

In this section we use the technique of Chan [53] for dominance reporting, described in Section 2.2.
We remind that Chan was the first to show the idea of combining dominance reporting with
Fredman’s trick, for improving polylogarithmic factors, where the problem he applied it on was
the general version of the famous all-pairs-shortest-paths (APSP) problem. This mechanism was
later extended by Bremner et al. [37] and used to show mildly subquadratic algorithms for various
problems, such as (min, +)-Convolution, and restricted variants of sorting X +Y and 3SUM. Later,
Grgnlund and Pettie [104] used similar techniques to give the first mildly subquadratic algorithm
for the general 3SUM problem, as mentioned earlier.

Recall the following bichromatic dominance reporting result of Chan [53], described in

Section 2.2.

Lemma 3.7.1 (Chan [53]). Given a finite set P = {p1,...,pn} of points in RY, each is colored
red or blue, one can report all pairs (i,j) € [n]?, such that p; is red, p; is blue, and p;[k] > p;[k],
for every k € [d], in time O(c%|P|**¢ + K), where K is the output size, € € (0,1) is an arbitrary

prespecified parameter, and c. = 2¢/(2° —1).

Throughout this section, we invoke Lemma 3.7.1 a large number of times, with € = 1/2,¢, ~
3.42, and d = dlogn, where § > 0 is sufficiently small to make the overall running time of all the
invocations dominated by the total output size; see below for details.

Grgnlund and Pettie [104] present two subquadratic algorithms for 3SUM, one is relatively
simple, and the second one has slightly faster runtime but is more involved. Both algorithms are
based on the decision tree algorithm described in Section 3.5, except that they use a much smaller
value of g, in order to make the overall running time subquadratic. We give here a brief overview
of the simpler algorithm. Their second algorithm has some common high-level features with our
algorithm, presented in the next section, but our algorithm processes the data in a different,
simpler, and more efficient manner.

Note that, sorting the set D in of Grgnlund and Pettie’s decision tree that is presented in
Section 3.5 lets one obtain a comparison-eflicient way to sort each of A4, ;. However, the actual
running time is even more than quadratic, when all operations are considered. When the boxes

A; ; are small enough, Grgnlund and Pettie showed that it is possible to obtain the sorted orders

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 35

in each of the (n/g)? boxes, in (all inclusive) mildly subquadratic time.

Specifically, the algorithm enumerates every permutation 7 : [¢?] — [¢]?, where 7 = (7, 7.) is
decomposed into row and column functions 7, 7. : [¢?] — [g], so that 7(k) = (7. (k), 7c(k)), for
each k € [g?]. By definition, 7 is the correct sorting permutation for the box A4; ; iff 4;;(n(t)) <
A; j(m(t+1)) for all t € [¢% — 1]. Since 4; ; = A; + A; this inequality can also be written

A (o)) + A (me(t)) < Ai(me(t + 1)) + A (me(t + 1))

By Fredman’s trick this is equivalent to saying that the (red) point p; dominates the (blue) point

q;, where

pi = (Aj(me(2)) = Aj(me(1)), -, Aj(me(9?)) — Aj(me(g® — 1))
g = (Ai(m: (1)) = Ai(m:(2)), ..., As(m(g® = 1)) = Ai(m(g?))) -

Invoking (g?)! times the bichromatic dominance reporting algorithm from Lemma 3.7.1, we
find, for each 7, all such dominating pairs, that is, all boxes A; ; sorted by . Note that, for each
pair of indices j, i, there is exactly one invocation of the dominating pairs procedure in which the
corresponding points p; and ¢; are such that p; dominates g;; this follows because we assume that
all elements of A; ; are distinct (see a previous remark concerning this issue). This is important
in order to keep the overall output size subquadratic.

By Lemma 3.7.1 and the remarks just made, the time to report all red/blue dominating pairs,
over all (g?)! invocations of the procedure, is O((gf)!cgtl(Qn/g)lJrE + (n/g)z), where the last term
is the total size of the outputs (one for each box A; ;). For e = 1/2 and g = %\/m, the
first term turns out to be negligible. The total running time is therefore O((n/g)?) for dominance
reporting, and O(n?logg/g) = O(nz(log logn)%2/(log n)l/Q) for the binary searches in Steps 4.1—
4.3. By Lemma 3.4.2 and Fredman [92], there are at most O(¢g®9) realizable permutations of A; ;
(which is much smaller than (g2)!). Hence, this algorithm can be slightly improved to run in
O(n2 log log n/\/@) time, by constructing the arrangement of the hyperplanes (as defined in
Section 3.4) explicitly, extracting from it the relevant permutations, and choosing g = ©(+4/logn).

3.8 Improved Deterministic Subquadratic 3SUM Algorithm

In the algorithm of Grgnlund and Pettie, described above, the boxes A;; are sorted by using
Fredman’s trick to transform each permutation into a sequence of g2 — 1 comparisons, which are
then resolved by the bichromatic dominance reporting algorithm. Consequently, the space into
which these sequences are encoded is of dimension ¢g? — 1, thus having the c§2_1 factor in the

running time of the bichromatic dominance reporting algorithm forced us to use g = O(y/logn).

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 36

In order to use a larger value of g, we want to reduce the dimension of the points. Thus, we want
to find a method to sort smaller sets, while still be able to do the binary searches in each box in
O(log g) time.

Fix some k € [¢%], and let (I,m) € [g]* be a point in the g x g grid, such that A; ;(I,m) is the
k-th smallest element in the box A; ;. Let 7 = (7, 7.) denote CONTOUR(A; ;(I,m)), and enumerate
its elements as 7(1),7(2),.... Recall that, if 7(t + 1) = 7(t) + (0,—1) then A; ;(I,m) < A; ;(7(t)),
otherwise, if 7(¢ + 1) = 7(¢) + (1,0) then A, ;(I,m) > A; ;(7(t)). The contour starting position is
(1:(0),7(0)) = (1, g), and it ends at the first t* for which 7(t*) = (g+1,) or 7(t*) = (-,0). Recall
that a pair of contours CONTOUR(x) and CONTOUR(y) in A; ; may overlap, but can never cross;
see Lemma 3.3.1.

Let 7'(A; ;(I,m)) = (7/(0),7'(1),...,7'(t+)) € T = CONTOUR(A, ;(I,m)) be the partial contour
of 7, defined as the subsequence of positions of 7 at which we chose to go down (i.e., increment lo
in the quadratic algorithm). The sequence 7/(A; ;(I,m)) is of length at most g, since it contains
at most one element of each row (at which we go down, by incrementing lo); see Figure 3.3.1.

Since the rows of A; ; are sorted, each position (a,b) € 7'(4; ;(I,m)) satisfies

A;i(a, b)) < A;j(I,m) for every b <b. (3.1)

A; i(a,b") = A; j(I,m) for every b > b. (3.2)

Thus, 7/(A;,;(1,m)) partitions A; ; into two sets: A(; ;)1 < (=0, A; ;(l,m)) consists of the elements
at positions in {(a,') | (a,b) € 7/(A;;(I,m)) and b’ < b}, and A(; j)r < [A;;(I,m),0) consists
of the elements at positions in {(a,b”) | (a,b) € 7/(A;;(l,m)) and b” > b}. Rows succeeding the
last row of 7'(A;;(l,m)) are fully contained in A; jyg. By construction, A ;1 is the set of all
elements in A; ; that are smaller than the k—th smallest element A; ;(I,m), so the considerations
just made, provide the structure of this set. See Figure 3.3.1 for an illustration.

Each partial contour 7’ is thus a sequence of positions in A; ; such that (i) the rows containing
these positions form a contiguous subsequence, starting from the first row of A, ;, (ii) each row in
this subsequence has exactly one entry of 7/, and (iii) the sequence of columns of the entries of
7' is weakly monotone decreasing: if (a,b) and (a + 1,b") are in 7’ then b’ < b. Any sequence 7’
that satisfies properties (i)—(iii) is called a wvalid partial contour. Note that a valid partial contour
depends only on the positions of the contour in the box A; ;, and not on the actual values of the
entries of A, ;.

Let 1/ be some valid partial contour, as just defined, over a [g] x [g] position set, such that
the sum of the column indices of positions in y' is exactly k. Write p/ = (pl, ul), as was done
for permutations above, so that u, gives the row indices of the elements of p/, and . gives their
column indices. Denote by ' < g the number of positions in p'.

For given indices ¢,m, we can determine, using (3.1) and (3.2), whether ' = 7/(4;;(l,m)),

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 37

by testing, for each t € [t'], whether A; ;(1/(t)) < A; ;j(I,m) and A; ;(1/(t) + (0,1)) > A; ;(I,m),
except for the ¢y for which A; ;(1(to)) = A; ;(I,m), since then the second inequality becomes an
equality; this takes at most 2¢' — 2 comparisons. By Fredman’s trick, and since A; ; = A; + A;,
this can be restated, that p/ = 7/(A4; ;({,m)) iff the (red) point p; dominates the (blue) point g¢;,

where

pi = (-5 Aj(m) — A(pe(t), Aj(pet +(0,1)) — A;(m)), -..) (3.3)
g = (- Ailm(t) — Ai()), Ai(l) — Ai(pp(1)), --)

where the 2t' — 2 coordinates are indexed in pairs by ¢ € [t'] — {t0}.

We regard each box A; ; as being partitioned into h = glogg sets A(; jy1,- .., A j)n, each of
size at most s = g/log g, such that for k € [h], A(; j)x is the set of all elements that are at least
the (k — 1)s—smallest element, and smaller than the ks—smallest element in A; ;. Our goal is to
compute, for each box A; ;, the positions of the elements of the sets A(; jy1,..., A j)n, and the
correct sorting permutation of each of them, as well as to determine, for each k € [h], the position
of the ks—smallest element in A; ;.

Fix k € [h]. We enumerate all the pairs of realizable valid partial contours Hl(kq)sv M, such
that (i) u’(}—1)s Lies to the left and above Wyes> and (ii) the sums of the column indices of their entries
are (k — 1)s and ks, respectively. Let Si be the set of positions enclosed between the two partial
contours /‘/(kq)s and pf.., excluding //(kq)s and including pu} .. For each A; ;, we want to identify
the pair (u’(k_l)s,), for which ,u’(k_l)s and p,, are the partial contours of the (k — 1)s-smallest
and the ks-smallest elements of A; ;, respectively. Thus Sj is the set of the s positions of the
elements of A; ; that are larger or equal to the (k — 1)s-smallest element and smaller than the
ks-smallest element. These are the positions of the set A(; ;.. See Figure 3.3.1 for an illustration.

It is easily seen that there are at most 2%9 pairs of sequences (p’(k_l)s,), and there is only
one unique pair of valid partial contours (u’(k_l)s, W) that satisfy all the above requirements
for a specific box A, ;, as there is only one (k — 1)s—smallest element and only one ks—smallest
element in A; ; (assuming, as above, that all the elements of A, ; are distinct). We enumerate all
pairs of positions Pi, P, € [g]?, such that Py € py_1)s and Py € py, (recall that p' is a partial
contour of some contour p, where y is uniquely determined from p’, see Figure 3.3.1). There are
at most (2g)? = 4¢? such positions. We also enumerate every realizable permutation 7 : [s] — S
of the elements at positions in Sy (where, for each A; ;, we want to identify the permutation that
sorts its elements at the positions of S;). The number of permutations is bounded trivially by
sl = (g/logg)!.

We now extend the points defined in (3.3), to make them encode additional information, as
follows. For every tuple (P, Pa, ,u/(k_l)s, s>), We create red points {p;}je[n/q) and blue points

{qi}icn/q in R‘l(t/_l)“_l, such that a red point p; dominates a blue point g; iff the following

CHAPTER 3. 35UM, K-SUM, AND LINEAR DEGENERACY 38

conditions hold. (i) u’(kfl)s =7'(4; ;(P1)), (i) p}s = 7' (A j(P2)), and (iii) 7 is the unique sorting
permutation of the portion of A; ; with indices in Si. The first 4t — 4 coordinates encode the
correctness of u’(K—1)s and ., (asin (3.3), using the positions Py, P, as those defining the respective
contours), and the last s — 1 coordinates encode the correctness of , as in Section 3.7 but for a
permutation of size at most s = g/logg. We do this h = glog g times, for each k € [h].

According to Lemma 3.7.1, the overall time to report all bichromatic dominating pairs is
0] (h . 24992s!cf(g_l)“_1(n/g)prE + h(n/g)2> .

The second term is the output size, because for each of the (n/g)? boxes 4; ;, there will be exactly
h dominating pairs, one for each pair of consecutive partial contours, as above. By fixing e = 1/2
and g = dlogn with a small enough d, the first term will be negligible and the runtime will be
dominated by the output size O(h(n/g)?) = O(n*logg/g) = O(n*loglogn/logn).

We can now search an element x in a box A; ;, in O(log g) time. We first do a binary search,
in O(log g) time, over the h positions storing the ks—smallest element of A; ;, for k € [h] (we
have already computed their positions, and, by definition, they are already sorted). This will give
us a single set A(; j), that can possibly contain z. Then we do another binary search in A jyx,
also in O(log g) time, as we already found its sorting permutation earlier. (Note that each such
permutation 7 is of length at most g/logg, and of values from [g]?. Thus, by our earlier choice
of g, ™ can be stored in a machine word of size O(logn), and be accessed in O(1) time.) Each
element —A(k) is being searched in at most 2[n/g] boxes (as in Steps 4.1-4.3 of Grgnlund and
Pettie’s decision tree, described in Section 3.5). Hence, the total running time of the algorithm is

O(n?logg/g) = O(n*loglogn/logn) deterministic time. This proves Theorem 3.2.3. O

Chapter 4

Geometric Pattern Matching
Algorithms

39

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 40
4.1 Dynamic Time Warping and Geometric Edit Distance

Dynamic Time Warping (DTW) and Geometric Edit Distance (GED) are basic similarity measures
between curves or general temporal sequences (e.g., time series) that are represented as sequences
of points in some metric space (X,dist). The DTW and GED measures are massively used in
various fields of computer science and computational biology. Consequently, the tasks of computing
these measures are among the core problems in P. Despite extensive efforts to find more efficient
algorithms, the best-known algorithms for computing the DTW or GED between two sequences
of points in X = R? are long-standing dynamic programming algorithms that require quadratic
runtime, even for the one-dimensional case d = 1, which is perhaps one of the most used in practice.

In this chapter, we present deterministic algorithms that run in O (n?/loglogn) time, for
computing DTW or GED between two sequences of n points in R. This result breaks the nearly
50 years old quadratic time bound for this problems. Our algorithms can be extended to work also
for higher dimensional spaces R?, for any constant d, when the underlying distance-metric dist is

polyhedral (e.g., L1, Lo).

4.1.1 Problem Statements

Let A = (p1,...,pn) and B = (q1,...,Gm) be two sequences of points (also referred to as curves) in
some metric space (X, dist). A coupling C' = (¢1,...,cx) between A and B is an ordered sequence

of distinct pairs of points from A x B, such that ¢; = (p1,q1), ¢k = (Pn,Gm), and

Cr = (pian) = Cr41 € {(pi+17Qj)a (pian-ﬁ-l)a (pi+1an+1)}7

for » < k. The DTW-distance between A and B is

dtw(A, B) = c:éfif,i%mg{ > dist(ps, qj)}. (4.1)
(pi g;)eC

A coupling C for which the above sum is minimized is called an optimal coupling. The DTW
problem is to compute dtw(A, B), and sometimes also an optimal coupling C.

A monotone matching M = {my,...,my} between A and B is a set of pairs of points from
A x B, such that any two pairs (p;, q;), (pir, q;7) € M satisfy that ¢ < ¢ iff j < j°. This also implies
that each point in A is matched with at most one point in B and vice versa (possibly some points
in A U B do not appear in any pair of the matching); see Figure 4.1.1 for an illustration. Note the
difference from coupling (defined above), which covers all points of A U B and a point can appear
in multiple pairs of the coupling. The cost of M is defined to be the sum of all the distances
between the points of each pair in M, plus a gap penalty parameter p € R, for each point in Au B

that does not appear in any pair of M.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 41

P4

Q2 q4 q6

Figure 4.1.1: Example of a monotone matching (in blue) between two polygonal curves (represented
by point-sequences) in the plane.

The Geometric Edit Distance (GED) between A and B is

ged(A, B) = rr/&n{< Z dist(p;, qj)) +p(n+m-— 2|M)}, (4.2)
(pi,q5)eM

where the minimum is taken over all sets of monotone matchings M in the complete bipartite graph
A x B. A monotone matching M for which the above sum is minimized is called an optimal mat-
ching. The GED problem is to compute ged(A, B), and sometimes also an optimal matching. More
sophisticated gap penalty functions have been proposed [75], but for this presentation, we focus on
the standard linear gap penalty function, although our presented algorithm supports more complex
gap penalty, such as taking p to be a linear function in the coordinates of the points of A U B.
By tuning p correctly, meaningful matchings can be computed even when faced with outlier points
that arise from measurement errors or short deviations in otherwise similar trajectories.

The DTW-distance and GED are massively used in dozens of applications, such as speech
recognition, geometric shape matching, DNA and protein sequences, protein backbones, matching
of time series data, GPS, video and touch screen authentication trajectories, music signals, and
countless data mining applications; see [48,71,77,118-120,132,140,151] for some examples.

The best-known worst-case running times for solving DTW or GED are given by long-standing
simple dynamic programming algorithms that require ©(nm) time. We review the standard
quadratic-time DTW and GED algorithms in Section 4.2 and 4.4, respectively.

DTW was perhaps first introduced as a speech discrimination method [150] back in the 1960’s.
GED is a natural extension of the well-known string version of Edit Distance, however, the
subquadratic-time algorithms for the string version do not seem to extend to GED (see below).

A popular setting in both theory and practice is the one-dimensional case X = R (under the
standard Euclidean distance dist(z,y) = |x — y|). Even for this special case, no subquadratic-time

algorithms have been known. We consider this case throughout most of the chapter.

4.1.2 Summary of Our Results and Related Works

Prior Results. Since no subquadratic-time algorithm is known for computing DTW, a number

of heuristics were designed to speed up its exact computation in practice; see Wang et al. [152] for

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 42

a survey. Very recently, Agarwal et al. [8] gave a near-linear approximation scheme for computing
DTW or GED for a restricted, although quite large, family of curves.
Recently, Bringmann and Kiinnemann [39] proved that DTW on one-dimensional point sequen-

ces whose elements are taken from {0, 1, 2, 4, 8} R has no O(n?>~W)

-time algorithm, unless
SETH fails. They proved a similar hardness result also for Edit Distance between two binary
strings, improving the conditional lower bound of Backurs and Indyk [23]. This line of work was
extended in a very recent work by Abboud et al. [3], and Abboud and Bringmann [2], where they
show that even a sufficiently large polylog(n)-factor improvement over the quadratic-time upper
bound of similar quadratic matching problems, may lead to major consequences, such as faster
Formula-SAT algorithms, and new circuit complexity lower bounds.

Masek and Paterson [128] showed that Edit Distance between two strings of length at most n
over an O(1)-size alphabet can be solved in O(n?/logn) time. More recent works [34,103] managed
to lift the demand for O(1)-size alphabet and retain a subquadratic-time bound by making a better
use of the word-RAM model. However, these works do not seem to extend to GED, especially not
when taking sequences of points with arbitrary real coordinates. In the string version, the cost of
replacing a character is fixed (usually 1), hence, we only need to detect that two characters are
not identical in order to compute the replacement cost, unlike in GED, where the analogous cost

for two matched points is taken to be their distance, under some metric.

Our Results and Related Works. Efforts for breaking the quadratic time barrier for basic
similarity measures between curves and point-sequences were recently stimulated by the result of
Agarwal et al. [7] who showed that the discrete Fréchet distance can be computed in O(n?/logn)
time. Their algorithm for (discrete) Fréchet distance does not extend to DTW or GED, as the
formula for the (discrete) Fréchet distance uses the max function over distances between pairs of
points, while the formulas for DTW and GED involve their sum. As a result, the Fréchet distance
is effectively determined by a single pair of sequence elements, which fits well into the use of the
Four-Russians technique [20], while the DTW and GED are determined by many pairs of elements.
This makes our algorithms much more subtle, involving a combination and extension of techniques
from computational geometry and graph shortest paths.

To simplify the presentation, we present our results only for the “balanced” case m = n;
extending them to the general case m < n is easy. The standard ©(mn)-time algorithm is superior
to our solution only when m is subpolynomial in n.

Our results are stated in the following theorems.

Theorem 4.1.1. Given two sequences A = (p1,...,pn) and B = (q1,...,¢n), each of n points
in R, the DTW-distance dtw(A, B) (and optimal coupling), or the GED ged(A, B) (and optimal

matching) can be computed by a deterministic algorithm in O(n?/loglogn) time.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 43

Theorem 4.1.1 gives the very first subquadratic-time algorithm for solving DTW, breaking the
nearly 50 years old ©(n?) time bound [150]. We present the improved algorithm for DTW in
Section 4.3. In Section 4.3.1 we extend our algorithm to give a more general result, which supports
high-dimensional polyhedral metric spaces, as stated in Theorem 4.1.2 given below. In Section 4.4

we extend our algorithm to obtain a subquadratic solution for GED.

Theorem 4.1.2. Let A = (p1,...,pn) and B = (q1,...,q,) be two sequences of n points in
R?, where d is a constant and the underlying distance-metric is polyhedral'. Then dtw(A, B)
(and optimal coupling), or ged(A, B) (and optimal matching) can be computed by a deterministic
algorithm in O(n?/loglogn) time.

4.2 Preliminaries, Tools, and the Quadratic Time DTW
Algorithm

Throughout this chapter, unlike Chapter 3, we view matrices with rows indexed in increasing order
from bottom to top and columns indexed in increasing order from left to right, so for example,
M0, 0] corresponds to the value of the leftmost-bottom cell of a matrix M.

In our algorithm, we will often use the following extension of Fredman’s trick (see also

Section 2.2).

aj—by+ - +a,—b. <aj —by +--+a, -0,
if and only if (4.3)

!

a1+ tar—d,— - —d, <bi 4+ +b — b — - — b,

As in Chapter 3, our algorithm uses Chan’s geometric domination technique, summarized in
Section 2.2 and in Lemma 2.2.1. We repeat below the statement of the lemma, for the conve-

nience of the reader.

Lemma 4.2.1 (Chan [53]). Given a finite set P = {p1,...,pn} of points in R? such that each
point is colored red or blue, one can report all pairs (i, j) € [n]?, such that p; is red, p; is blue, and
pilk] > p;[k] for every k € [d], in time O(c2|P|**¢ + K), where K is the output size, € € (0,1) is

an arbitrary prespecified parameter, and c. = 2°/(2¢ —1).

The Quadratic Time DTW Algorithm

We give an overview of the standard dynamic programming algorithm for computing the DTW-

distance between two sequences of n points in R, which requires quadratic time [150]. This algo-

IThat is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope with O(1)
facets (e.g., L1, Lo).

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 44

rithm can be easily extended to return also the optimal coupling (see below). In Section 4.4 we

overview a “similar in principle” algorithm for solving GED.

We are given as input two sequences A = (p1,...,p,) and B = (q1,...,q,) of n points in R.

(The algorithm below can be (trivially) modified to handle sequences of different lengths.)

1. Initialize an (n + 1) x (n + 1) matrix M and set M[0,0] := 0.

2. For each £ € [n]

2.1. M]J¢,0] := o0, M[0, /] := 0.

3. For each /€ [n],

3.1. For each m € [n],

3.1.1 M[lm] = |pe — qm| + min{M[zz —1,m], M[t,m —1], M[¢ —1,m — 1]}.
4. Return M[n,n].

The optimal coupling itself can also be retrieved, at no extra asymptotic cost, by the standard

technique of maintaining pointers from each (¢,m) to the preceding position
@ mYe{l—1,m), (L,m—1), (({—1,m—1)}

through which M[¢,m] is minimized. Tracing these pointers backwards from (n,n) to (0,0) and

reversing these links yields the desired optimal coupling.

4.3 Dynamic Time Warping in Subquadratic Time

As above, the input consists of two sequences A = (p1,...,pn) and B = (q1,...,¢,) of n points
in R. Our algorithm can easily be modified to handle the case where A and B have different
lengths.

Preparations

We fix some (small) parameter g, whose value will be specified later; for simplicity, we assume that
ﬁ is an integer. We decompose A and B into s = g%l subsequences A1, ..., A, and By, ..., B,
such that for each i,j € {2,...,s}, each of A; and B; consists of g — 1 consecutive elements of
the corresponding sequence, prefixed by the last element of the preceding subsequence. We have
that A; and B; are both of size g — 1, each A; and Bj is of size g, for 4,j € {2,..., s}, and each
consecutive pair A;, A;41 or Bj, Bjy1 have one common element.

For each 4, j € [s], denote by D; ; the all-pairs-distances matriz between points from A; and
points from Bj; specifically, D; ; is a g x g matrix (aka a boz, see below for the cases i = 1 or

j = 1) such that for every ¢,m € [g],

Dy j[6,m] = |Ai(f) — Bj(m))|.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 45

For all ¢ € [s], we add a leftmost column with co values to each box D; 1, and similarly, we add
a bottommost row with oo values to each box D; ;. In particular, D;; is augmented by both a
new leftmost column and a new bottommost row. The common element Dj 1[0, 0] of this row and

2
column is set to 0. Overall, we have s* = () boxes D; ;, all of size g x g.

.

We define a staircase path P on a g x g matrix D; ; as a sequence of positions from [g] x [g]
that form a monotone staircase structure, starting from a cell on the left or bottom boundary and
ending at the right or top boundary, so that each subsequent position is immediately either to
the right, above, or above-right of the previous one. Formally, by enumerating the path positions
as P(0),...,P(t*), we have P(t + 1) € {P(t) + (0,1),P(¢t) + (1,0), P(t) + (1,1)}, for each t €
{0,...,t* — 1}. The path starts at some point P(0) = (-,1) or (1,-), and ends at some t* (not
necessarily the first such index) for which P(t*) = (-, g) or (g,-). Note that t* can have any value
in [2¢g — 2]. The number of possible monotone staircase paths in a box D, ; is trivially bounded
by O(g%3%972), and the following more careful reasoning improves this bound to O(329). Each
staircase path can be encoded by its first position, followed by its sequence of moves, where each
move is in one of the directions up/right /up-right. Thus, the number of staircase paths that start
at some position (r,1) (resp. (1,7)) at the left (resp. bottom) boundary is bounded by 329-1~".
Thus, the total number of staircase paths that start at the left or the bottom boundary is bounded
by

g
2 %3271 = 0(3%).
r=1

We define the cost of a staircase path P in a box D; ; by

¥

cost; ;(P) = > D; ;(P(t)).
t=1
(For technical reasons, that will become clear in the sequel, we generally do not include the first
position P(0) of the path in evaluating its cost, except in the boxes D;; and D, ; for all ¢, j € [s].)
To ease the presentation, in the algorithm that follows, we assume (or ensure) that no two distinct
paths in a box D; ; have the same cost. This will be the case if we assume that the input sequences
are in sufficiently general position. In Section 4.3.2 we will show how this assumption can be
completely removed, by adding a few additional steps to the preprocessing stage of the algorithm,
without increasing its asymptotic time bound.

We denote by L the set of positions in the left and bottom boundaries of any box D; ;, and
by R the set of positions in the right and top boundaries (note that L and R have two common
positions). Given a starting position v € L, and an ending position w € R, we denote by S(v, w)
the set of all staircase paths P, ,, that start at v and end at w (if there is no staircase path between

v and w, then S(v,w) = F). We say that PJ, € S(v,w) is the shortest path between v and w in

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 46

Di,j iff
costj (Pr,) = min {costi; (Pyuw)}-

v,w P, weS(v,w)
Note that according to our general position assumption, the shortest path between v and w, within

a given box, is unique.

First Stage: Preprocessing

The first stage of our algorithm is to construct a data structure in subquadratic time (and storage),
such that for each box D; ;, and for each pair of positions (v, w) € L x R, we can retrieve the shortest
path Pf, in D;; and cost; j(P),) in O(1) time, when such a path exists (i.e., when S(v,w) is
nonempty).

The algorithm enumerates all (2g—1)? pairs of positions (v, w) in a g x ¢ matrix (box) such that
v € L and w € R, discarding pairs that cannot be connected by a monotone staircase path, and
referring to the surviving pairs as admissible. Again, we simplify the notation by upper bounding
this quantity by 4¢2. For each such admissible pair (v, w) € L x R, we also enumerate every possible
staircase path in S(v,w) as Py, : [t*] — [g] x [g], where we write P, ., = (P}, PS,,) as a pair

v,w
of row and column functions P}, PS5, : [t*] — [g], so that P, (k) = (P}, (k), PS,,(k)), for
each k € [t*]. (Note that t* is a path-dependent parameter, determined by v, w and the number
of diagonal moves in the path.) In total, there are O(3%9) possible staircase paths P, (for all
admissible pairs (v,w) € L x R combined), which we enumerate. The above enumerations are done
using a natural lexicographic order, which induces a total order on the < 4¢2 admissible pairs
of positions of L x R, and for each such pair (v,w), a total order on all possible staircase paths
P, € S(v,w).

Given two staircase paths P, ,, and P, , with the same starting and ending positions v, w in

w
a box D; j, we want to use the extended Fredman trick (as in (4.3)) to compare cost; ; (Pyw)
with cost; ; (P{),w), by comparing two expressions such that one depends on points from A; only
and the other depends on points from B; only. Suppose that P, ,, = ((¢1,m1),..., ¢y, m,)) and
P} ., = ((£1,m}),..., (£, m})) (note that (¢,,m,) = (£}, m}) = w, since both paths end at w, and

that we ignore the common starting positions (¢, mg) = (¢, my) = v). We have
costij (Pouw) = |Ai(£1) = Bj(ma)| + -+ + |Ai(£:) — Bj(m,.)),

and

costy j (Py) = |Ai(th) — Bj(my)| + -+ + |Ai(£) — B;(my)],

VW

and we want to test whether, say, cost; ; (Pyw) < cost; ; (P’) (recall that we assume that equa-

v,w

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 47

lities do not arise), that is, testing whether
[Ai(01) = Bj(ma)| + -+~ + [Ai(6:) = Bj(my)| < [Ai(€h) — By(my)| + -+ + |Ai(€}) — B (my)|. (4.4)

The last term in each side of (4.4) is actually unnecessary, since they are equal. In order to
transform this inequality into a form suitable for applying the extended Fredman trick (4.3), we
need to replace each absolute value |z| by either +x or —x, as appropriate. To see what we are
after, assume first that the expressions A;(¢y) — B;(my) and A;(¢,) — B;(m},) are all positive, so

that (4.4) becomes
Ai(6r) = Bj(my) + -+ Ai(€:) — Bj(m,) < Ai(6) — Bj(my) + -+ Ai(€;) — Bj(my).
By (4.3) we can rewrite this inequality as
A1)+ -+ Al = A() = - = Ai(E) < Bjlma) + -+ Bym,) — Bymh) — -~ Byom),

which can be written as

Ai(Py oy (1)) + -+ 4 Ai(Py (1) = As(Py 1, (1) — -+ — AP, (1) (4.5)
< Bj(P1?7111(1)) +ot Bj(R():,w(T)) - B](F)ql;cw(l)) - BJ(RI),Cu;(t)) (46)

If P,., = P}, (e, if P, , is the shortest path from v to w) in D, ; then the inequality above

vw
holds for all pairs (P, ., P,), where P, ,, € S(v,w) is any other staircase path between v and w.

For each admissible pair of positions (v,w) € L x R, we choose some staircase path P, ,, as a
candidate for being the shortest path from v to w. The overall number of sets of candidate paths is
fewer than (329)492 — 38 For a fixed choice of such a set of paths (one path for each admissible
pair (v,w) € L x R), we want to test, within some given box D; ;, whether all the < 4¢? chosen
paths are the shortest paths between the corresponding pairs of positions. As unfolded next, we
will apply this test for all boxes D; ;, and output those boxes at which the outcome is positive (for
the current chosen set of shortest paths). We will repeat the procedure for all < 38¢° possible sets

of candidate paths P, ,,. Since we enumerated the staircase paths in lexicographical order earlier,

we can easily proceed through all sets of candidate paths, using this order.

Testing a Fixed Choice of Shortest Paths. For each subsequence A;, we create a (blue)
point «;, and for each subsequence B; we create a (red) point §;, such that, for every admissible
pair (v, w) € L x R, we have one coordinate for each path P, ,, € S(v,w), different from the chosen
path P, .. The value of o; (resp., §;) at that coordinate is the corresponding expression (4.5)

(resp., (4.6)). The points a; and j3; are embedded in R%, where d, = 2(vw) Lv,w 18 the sum over

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 48

all admissible pairs (v, w) € L x R, and T, ,, is the number of monotone staircase paths from v to
w minus 1. As discussed earlier, d, = O(3%9).

We have that a (blue) point
@ = (o (P (1)) 4 -4 A(PE (1) = Ay(PLE (1) = - — Ay(PLE(8),)
is dominated by a (red) point
Bi = (s Bi(P5 (1) + -+ Bj(Py (1) = Bj (P, (1) = -+ = Bi(P,5,(1), .- -) ,

if and only if each of the paths that we chose (a path for every admissible pair (v,w) € L x R) is
the shortest path between the corresponding positions v, w in box D; ;. The number of points is
25 = O(n/g), and the time to prepare them, i.e., to compute all their coordinates, is O(2s-3%9-g) =
0(3%9n).

By Lemma 4.2.1, we can report all pairs of points (e, 3;) such that o; is dominated by 5;, in
0 (CEO(?’QQ)(n/g)l+E + K) time, where K is the number of boxes at which the test of our specific
chosen paths comes out positive. As mentioned earlier, we use € = 1/2, with ¢, ~ 3.42.

This runtime is for a specific choice of a set of shortest paths between all admissible pairs in
L x R. As already mentioned, we repeat this procedure at most 389" times. Overall, we will report
exactly s = © ((n/ g)z) dominating pairs (red on blue), because the set of shortest paths between
admissible pairs in L x R in each box D;; is unique (recall that we assumed that any pair of
distinct staircase paths in a box do not have the same cost). Since the overall number of sets of
candidate paths is bounded by 3893, one path for each admissible pair, the overall runtime for all

invocations of the bichromatic dominance reporting algorithm (including preparing the points) is
0 (3893 (329n + 05(329)(n/g)1+8> + (n/g)Q) .

Recall that, so far, we have assumed that all the differences within the absolute values
D; ;[¢,m] = |Ai(£) - Bj(m)| are positive, which allowed us to drop the absolute values, and
write D; ;[¢,m] = A;(¢) — Bj(m), for every i,j € [s], and ¢, m € [g], thereby facilitating the use of
the extended Fredman trick (4.3). Of course, in general this will not be the case, so, in order to
still be able to drop the absolute values, we also have to verify the signs of all these differences.

For each box D; ;, there is a unique sign assignment o* : [g] x [g] — {—1,1} such that
Dijlt,m] = [Ai(€) = Bj(m)| = a*(¢,m)(Ai(¢) — B;(m)),

for every ¢,m € [g] (our “general position” assumption implies that each difference is nonzero).

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 49

Thus for any staircase path P = (P*, P°) in D, j, of length ¢*, we have

¥
costy,; (P) =) o*(P(t)) (Ai(P*(t)) — Bj(P<(t))).-
t=1
Now we proceed as before, testing sets of paths, but now we also test sign assignments of the
box, by trying every possible assignment o : [g] x [g] — {—1, 1}, and modify the points c; and f;,
defined earlier, by (i) adding sign factors to each term, and (ii) adding coordinates that enable us
to test whether o is the correct assignment o* for the corresponding boxes D; ;.
Denote by P a candidate for the shortest path for some admissible pair of positions (v, w) €
L x R, and let o be a candidate sign assignment. Then, for every other path P’ € S(v,w), we have

the following modified coordinates for a; and [; respectively.

(..., o(P))A{(P (1)) + -+ - + o(P(r)Ai(P"(r)) — o(P'(1)Ai(P' " (1)) — - -- — a(P'(t))As(P'" (¢)),...) ,

(- o(P)B;(PY(1)) + -+ + a(P(r))B;(P*(r)) — o(P'(1))B;(P'°(1)) — -+ = o(P'(1)) B;(P'°(1)),...) ,

where we use the same notations as in (4.4), (4.5), and (4.6). In addition, to validate the correctness
of o, we extend «; and j3; by adding the following g* coordinates to each of them. For every pair

(¢,m) € [g] x [g], we add the following coordinates to «; and f3; respectively.

(cors—a(tm)Ai(D),..),
(...,—a(t,m)B;(m),...).

This ensures that a point «; is dominated by a point 5; iff D; ;[¢,m] = o(£,m) (A;(¢) — B;(m)),
for every £,m € [g], and all the < 4¢® candidate paths that we test are indeed shortest paths in
D; ;.

The runtime analysis is similar to the preceding one, but now we increase the number of can-
didate choices by a factor of 29° (this factor bounds the number of all possible sign assignments),
and the dimension of the space where the points are embedded increases by ¢? additional coor-
dinates. We now have 2s = O(n/g) points in Rds+9” (dy = O(3%) is as defined earlier), and the
time to prepare them (computing the value of each coordinate) is O((n/g)(d, + g*)g) = O(3%9n).
There are at most 389 sets of candidate paths to test, and for each set, there are at most 29° sign

assignment to test, so in total, we invoke the bichromatic dominance reporting algorithm at most

29°389" < 389°+9” times, for an overall runtime (including preparing the points) of
0 (3893“’2 (32971 + 050(329)”2 (n/g)HE) + (n/g)Q) .

By setting ¢ = 1/2 and g = dloglogn, for a suitable sufficiently small constant ¢, the first

two terms become negligible (strongly subquadratic), and the runtime is therefore dominated by

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 50

the output size, that is O ((n/g)?) = O (n?/(loglogn)?). Each reported pair (cy, ;) certifies that
the current set of < 4¢® chosen candidate paths are all shortest paths in box D; ;. Each of the
5% = ©((n/g)?) sets of shortest paths is represented by O(g®) = O((loglogn)®) bits (there are
< 4g?% shortest paths connecting admissible pairs, each of length at most 2g — 1, and each path
can be encoded by its first position, followed by the sequence of its at most 2g — 2 moves, where
each move is in one of the three directions up/right/up-right), and thus it can easily be stored
in one machine word (for sufficiently small §). Moreover, we have an order on the pairs (v, w)
(induced by our earlier enumeration), so for each set, we can store its shortest paths in this order,
and therefore, accessing a specific path (for some admissible pair) from the set takes O(1) time (in
the word-RAM model that we assume).

Note, however, that we obtain only the positions that the paths traverse and not their cost. In
later stages of our algorithm we will also need to compute, on demand, the cost of certain paths,
but doing this naively would take O(g) time per path, which is too expensive for us. To handle
this issue, when we choose a candidate sign assignment o, and a set S of the < 4¢® paths as
candidates for the shortest paths, we also compute and store, for each path P € S that we have

not yet encountered, the rows-cost of P in A;,

Vi(P,o) = o(P(1))Ai(P*(1)) + -+ + o (P(t%)) A (P (t¥)),
for every i € [s], and the columns-cost of P in Bj,

Vi(Po) = o(P(1)B;(P(1)) + -+ + o (P(t%)) B; (P (%)),

for every j € [s], where t* is the length of P. Observe that, for the correct sign assignment o* of
box Di,j7

costi ;(P) = VI(P,o*) — VE(P,o*). (4.7)

We do not compute V;'(P, o) — VF(P,0) yet, but only compute and store (if not already sto-
red) the separate quantities V;'(P, o) and VS (P, o), for each P € S, for every chosen set S, and
sign assignment o. We store the values V'(P,0) and VF(P,0) in arrays, ordered by the earlier
enumeration of all staircase paths, so that given a staircase path P, and indices 7,5 € [ﬁ],
we can retrieve, upon demand, the values V;'(P,0*) and VS (P,0*), and compute cost; ;(P) by
using (4.7), in O(1) time. In total, over all possible candidate paths and sign assignments, this
takes O(29°3%9 - (n/g) - g) = O(39°*297) time and space, which is already subsumed by the time
(and space) bound for reporting dominances from the previous stage.

To summarize this stage of the algorithm, we presented a subquadratic-time preprocessing
procedure, which runs in O ((n/g)?) = O (n*/(loglogn)?) time, such that for any box D; ;, and

an admissible pair of positions (v,w) € L x R, we can retrieve the shortest path P, in O(1)

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 51

R

Mi717j

Figure 4.3.1: The L-boundary (shaded in gray) of box M; ; overlaps with the top boundary of M;_; ;
and the right boundary of M; j_;. Once we have the values of M at the positions of the L-boundary
of M; ;, our algorithm computes the values of M at the positions of its R-boundary (shaded in blue).

time, and can also compute cost; ;(P;,,) in O(1) time. This will be useful in the next stage of our

algorithm.

Second Stage: Compact Dynamic Programming

Our approach is to view the (n+1) x (n+ 1) matrix M from the dynamic programming algorithm
(see Section 4.2) as decomposed into s? = (9%1)2 boxes M; ;, each of size g x g, so that each
box M; ; occupies the same positions as does the corresponding box D; ;. That is, the indices of
the rows (resp., columns) of M; ; are those of A; (resp., B;). In particular, for each 4, j € [s], the
positions (-,g) on the right boundary of each box M; ; coincide with the corresponding positions
(+,1) on the left boundary of M; 11, and the positions (g, -) on the top boundary of M; ; coincide
with the corresponding positions (1,-) on the bottom boundary of M;.1 ;. Formally, M; ;[¢,m] =
M[(i—1)(g—1)+4, (j —1)(g — 1) + m], for each position (¢,m) € [g] % [¢]. See Figure 4.3.1 for
an illustration.

Our strategy is to traverse the boxes, starting from the leftmost-bottom one M; ;, where we
already have the values of M at the sequence L of positions of its left and bottom boundaries
(initialized to the same values as in the algorithm in Section 4.2), and we compute the values of
M on its top and right boundaries R. We then continue to the box on the right, M; 5, now having
the values on its L-boundary (where its left portion overlaps with the R-boundary of M; ; and its
bottom portion is taken from the already preset bottom boundary), and we compute the values of
M on its R-boundary. We continue in this way until we reach the rightmost-bottom box M; ;. We
then continue in the same manner in the next row of boxes, starting at M ; and ending at Ms g,
and keep going through the rows of boxes in order. The process ends once we compute the values
of M on the R-boundary of the rightmost-top box Mj ,, from which we obtain the desired entry
MIn,n].

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 52

For convenience, we enumerate the positions in L as L(1),...,L(2¢g — 1) in “clockwise” order,
so that L(1) is the rightmost-bottom position (1,g), and L(2g — 1) is the leftmost-top position
(g,1). Similarly, we enumerate the positions of R by R(1),...,R(2¢g — 1) in “counterclockwise”
order, with the same starting and ending locations. Let M, ;(L) = {M; ;[L(1)],... M, ;[L(2¢—1)]}
and M, ;(R) = {M,; ;[R(1)],... M, ;[R(2g — 1)]}, for ¢,7 € [s].

By definition, for each position (¢,m) € [n + 1] x [n + 1], M[¢,m] is the minimal cost of a
staircase path from (0,0) to (¢,m). It easily follows, by construction, that for each box D, ;, and
for each position w € R, we have

Miglw] = min {Mi[v] + costi; (P, . (4.8)

veEL
(v,w) admissible

(Note that, by definition, the term D; ;[v] is included in M; ;[v] and not in cost; j(P;,,), so it is
not doubly counted.) For each box M, ; and each position w € R, our goal is thus to compute the
position u € L that attains the minimum in (4.8), and the corresponding cost M, ;[w]. We call
such (u,w) the minimal pair for w in M; ;.

For each box D; ;, and each admissible pair (v,w) € L x R, we refer to the value M; ;[v] +
cost; ;(Py,,) as the cumulative cost of the pair (v,w), and denote it by c-cost(v,w).

We can rewrite (4.8), for each position w € R, as
M j[w] = min{ M} [w], M7;[w]},

where M{?j [w] is the minimum in (4.8) computed only over v € {L(1),...,L(g)}, which is the
portion of L that overlaps the R-boundary of the bottom (south) neighbor M,_; ; (when i > 1),
and M}" [w] is computed over v € {L(g), ..., L(2g — 1)}, which overlaps the R-boundary of the left
(west) neighbor M; ;1 (when j > 1). See Figure 4.3.1 for a schematic illustration. (Recall that the
bottommost row and the leftmost column of M are initialized with co values, except their shared
cell MJ0,0] that is initialized with 0.) The output of the algorithm is M; s[R(g)] = Ms s[g,9] =
M(n,n]. We can also return the optimal coupling, by using a simple backward pointer tracing

procedure, similar in principle to the one mentioned for the quadratic algorithm in Section 4.2.

Computing Minimal Pairs. We still have to explain how to compute the minimal pairs (u, w)
in each box M; ;. Our preprocessing stage produces, for every box D ;, the set of all its shortest
paths S; ; = {PJ, | (v,w) € L x R} (ordered by the earlier enumeration of L x R and including
only admissible pairs), and we can also retrieve the cost of each of these paths in O(1) time (as
explained earlier in the preprocessing stage). The cumulative cost (defined above) of each such
pair (v,w) can also be computed in O(1) time, assuming we have already computed M; ;[v]. A

naive, brute-force technique for computing the minimal pairs is to compute all the cumulative costs

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 53

M; ;

w

u

Figure 4.3.2: By Lemma 4.3.1, if (u,w) and (v/,w’) are minimal pairs in M, ;, then the illustrated
scenario is impossible, since the path P}, (in green) is a portion of the shortest path from A/[0,0] to
M; ;[w], and the path P}, (in orange) is a portion of the shortest path from M[0,0] to M, ;[w'].

u,w’

The illustrated intersection implies that one of the latter paths can decrease its cumulative cost by
replacing its portion that ends at h by the respective portion that ends in h of the other path (recall
that we assume that there are no two paths with the same cost), which contradicts the fact that both
of these paths are shortest paths.

c-cost; j (v, w), for all admissible pairs (v,w) € L x R, and select from them the minimal pairs. This
however would take O(g?) time for each of the s? boxes, for a total of ©(g?s?) = ©(n?) time, which
is what we want to avoid.

Fortunately, we have the following important lemma, which lets us compute all the minimal

pairs within a box, significantly faster than in O(g?) time.

Lemma 4.3.1. For a fized box D; ;, and for any pair of distinct positions w,w’ € R, let u,u' € L
be the positions for which (u,w) and (v, w’) are minimal pairs in M; ;. Then their corresponding
shortest paths Py, and P;",’w/ can partially overlap but can never cross each other. Formally,
assuming that w > w' (in the counterclockwise order along R), we have that for any £,¢',m € [g],

if (¢,m) € Py, and (¢{',;m) € PJ , then £ > {'. That is, Py, lies fully above P

u’,w’

(partial

overlapping is possible). In particular, we also have u = u' (in the clockwise order along L).

Lemma 4.3.1 asserts the so-called Monge property of shortest-path matrices (see, e.g., [45,116]).
See Figure 4.3.2 for an illustration (of an impossible crossing) and a sketch of a proof.

Using Lemma 4.3.1, we first present a divide-and-conquer paradigm for computing the minimal
pairs within a box M; ; in O(glogg) time, which is conceptually simple to perceive. However, this
is not the best we can do. Afterwards, we present an even more efficient procedure that takes only
O(g) time in total.

We start by setting the median index k& = ||R|/2] of | R|, and compute the minimal pair (u, R(k))

and its c-cost(u, R(k)), naively, in O(g) time, as explained above. The path P*

R(K) decomposes the

box M; ; into two parts, so that one part, X, consists of all the positions in M, ; that are (weakly)
above P¥ R(k)? and the other part, Y, consists of all the positions in M; ; that are (weakly) below
P;"’ R(k)> 5O that X and Y are disjoint, except for the positions along the path P;"’ R(k) which they

share. By Lemma 4.3.1, the shortest paths between any other minimal pair of positions in L x R

can never Cross P:f, R(k)" Thus, we can repeat this process separately in X and in Y. Note that

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 54

the input to each recursive step is just the sequences of positions of X and Y along L and R,
respectively (and we encode each sequence simply by its first and last elements); there is no need
to keep track of the corresponding portion of M; ; itself.

Denote by T'(a,b) the maximum runtime for computing all the minimal pairs (u,w), within
any box M, ;, for u in some contiguous portion L’ of a entries of L, and w in some contiguous
portion R’ of b entries of R. Clearly, T'(1,b) = O(b), and T'(a,1) = O(a). In general, the runtime

is bounded by the recurrence

T(a,b) = max { T(k, [b/2]) + T(a—k + 1, [b/2]) } + 0(a).

It is an easy exercise to show, by induction, that the solution of this recurrence satisfies T'(a,b) =
O ((a + b)logb). Thus, the runtime of the divide-and-conquer procedure described above, for a
fixed box M, ;, is O ((|R| + |L|)log|R|) = O(glogg).

The runtime of computing M; ;(R) for all s> = © ((n/g)?) boxes is thus O ((n/g)*glogg) =
O (n2 log g/ g). Overall, including the preprocessing stage, the total runtime of the algorithm is
O ((n/g)2 + n?log g/g) =0 (n2 log g/g). As dictated by the preprocessing stage, we need to choose
g = O(loglogn), so the overall runtime is O (n2 log log log n/log log n)

A Further Improvement: Removing the logloglogn Factor. We can speed up the compu-
tation of minimal pairs even further, so that computing M; ;(R) for each box will take O(g) time,
improving the O(glog g) bound of the divide-and-conquer algorithm described above.

For each box M;;, denote by M[f the (2g — 1) x (2¢ — 1) matrix such that the L and R
positions of M; ; correspond to the rows and columns of MfJR, respectively. Namely, each pair
(v,w) € L x R corresponds to a cell in MZ%]»R that its value is c-cost; ;j(v,w) (that is, the cost of
the shortest path from the origin of M that goes through v and ends at w). For convenience, we

denote by M[f'[¢,m] the cell that corresponds to the pair (L(£), R(m)) € L x R.

Lemma 4.3.1 implies the following observation.
Observation 4.3.2. The matriz ijR is a Monge matriz. That is, for every £ < ¢ € [2g—1] and
every m < m' € [2g — 1], we have that

MEF[Em] + MEF[C,m!] < MEFL6m'] + MEF[E m]. (4.9)

Indeed, it is easy to check that if Equation (4.9) does not hold then we have a contradiction to
Lemma 4.3.1. (See [46] for a survey on Monge matrices and their applications.)

Observation 4.3.2 immediately implies that the matrix ijR is totally monotone. That is, for

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS %)

every £ < ! € [2g — 1] and every m < m/ € [2g — 1], we have that
LR LR LR LR
M ¢, m] > M, [¢(,m'] = M [¢/,m] > M, [¢',m].

To compute M; ;(R) we need to find the minimum of every column w € R (ie., to find
minyer, M v, w]). Since M is totally monotone, we can use the SMAWK algorithm [9] to
compute the minimum of each column of R in total O(|L| + |R|) = O(g) time.

Thus, the runtime of computing M; ;(R) for all s* = © ((n/g)?) boxes becomes O (n?/g).
This bound in fact dominates the total runtime of the algorithm, provided the we choose g =
O(loglogn), due to the preprocessing stage. Hence, we obtain that the total runtime of the
algorithm is O (n?/loglogn).

This completes the proof of Theorem 4.1.1 for DTW on a pair of point-sequences in R. O

4.3.1 Extension to High-Dimensional Polyhedral Metric Spaces

The algorithm described above can be extended to work in higher dimensional spaces R¢, for
any constant d, when the underlying metric is polyhedral. That is, the underlying metric is
induced by a norm, whose unit ball is a symmetric convex polytope with O(1) facets. To illustrate
this extension, consider the Li-metric in R%, whose unit ball is the symmetric cross-polytope
|z1]+ -+ |za| < 1, with 27 facets. In this case, each entry in the blocks D; ; is a sum of d absolute
values. By choosing a candidate sign assignment for all the absolute values, each comparison that
the algorithm faces is a sign test of a 2d-linear expression in the input (with coefficients 1, —1), and
the extended Fredman trick (4.3) can then be applied when comparing the costs of two staircase
paths. Then, in much the same way as before, we can encode the inequalities into red and blue
points a; and 3;, and use a suitable modification of the preceding machinery to compare costs
of staircase paths and validate sign assignments correctness. Omitting further details, we get a
subquadratic algorithm for DTW in such a higher-dimensional setup under the Li-metric, with the
same asymptotic time bound as that of the algorithm described above, but with the constant of
proportionality depending (exponentially) on d.

To handle general polyhedral metrics, let K denote the unit ball of the metric. For each pair
of points py € A, g, € B, we choose some facet of K as a candidate for the facet that is hit by the
oriented ray that emanates from the origin in the direction of the vector pgq,, (this replaces the
sign assignments used in the one-dimensional case and for the Li-metric). Given such a candidate
facet, dist(pe, g) is a linear expression, and the extended Fredman trick, with all the follow-up
for comparing costs of staircase paths can be applied, except that we also need to validate the
correctness of our chosen candidate facet of K. This is done as follows.

Assume, without loss of generality, that each facet of K is a (d — 1)-simplex (this can be

achieved by a suitable triangulation of the facets). Consider a simplex-facet f, and let F' be the

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 56

cone spanned by f with apex at the origin. F' is the intersection of d halfspaces, each of the form
(hi,x) = 0, for suitable normal unit vectors hq,...,hq. In order to verify that the direction pzq,
hits f, we need to verify that (h;, ¢m — pe) = 0, or that (h;, qm) = (hi,pe), for i =1,...,d. These
are d linear tests, which fit well into the frame of the extended Fredman trick (they replace the
sign test that are used in the one-dimensional case, and in the L;-case).

Again, omitting the further, rather routine details, we obtain a subquadratic algorithm for DTW
in any fixed dimension, under any polyhedral metric, with the same runtime as in Theorem 4.1.1
and as stated in Theorem 4.1.2. The constant of proportionality depends on the dimension d, and

on the complexity of the unit ball K of the metric (i.e., the number and complexity of its facets).

4.3.2 Lifting the General Position Assumption

In the algorithm above, we assumed that in each box D; ; there are no two staircase paths with
the same cost. This assumption was crucial for preserving the overall output size of the dominance
reporting routines to be O(n?/g?). Specifically, all we need to ensure is that for each admissible
boundary pair from L x R, there will be only one staircase path with minimum cost. Our goal is
to be able to break ties consistently. However, this is not trivial, as we must find a way to do it
while using the Fredman-Chan mechanism. We can do it as follows.

In the preprocessing stage, our algorithm enumerated all the < 329 staircase paths in a g x g
grid. These enumerations are done in a natural lexicographic order and thus induce a total order
on the staircase paths. Denote this total order by £. (Note that £ is independent of the values of
A and B.)

Let A, B be two given input sequences of points (numbers) in R (a similar solution works for
the extension to R? under polyhedral metrics described above). First, sort A and B in increasing

order in O(nlogn) time. Find a positive closest pair (a,b) € A x B, i.e., a pair satisfying

la—bl = {lai = bs[}.

min
(a,‘,7b_7‘)EA><B: |ai—bj ‘>0

This can be done while merging the sorted A and B, in O(n) time. (If we are in a polyhedral
R? metric space we use a straightforward modification of the standard O(2¢nlogn) divide-and-
conquer closest pair algorithm of Bentley and Shamos [32,33] to find the positive closest pair in
the set AU B.) Put € = |a — b|. For every boundary pair in L x R there are strictly fewer than

329 staircase paths, denote this number by r. Set
£1=¢/3% <9 =2¢/3%9 <e3=3¢/3% < - <, =re/3%.

For every boundary pair (v,w) € L x R, and every staircase path P, ,, (recall that P, is a

sequence of positions in the g x g grid, and is independent of the values of A and B), we check for

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS o7

the index k of P, ., in the total order £, and add ey, to cost; (P,), for every ¢,j € [ﬁ]

For a boundary pair (v,w) € L x R, let P, ,, and P, , be two distinct staircase paths, and let
k, k' € [r] be their corresponding (distinct) indices in the total order £. Assume, without loss of
generality, that & < &’ (it must be that either k < k' or k¥’ < k, since the two paths are distinct,
and L is a total order). Since € < € < |a — b|, it holds that for every i, j € [#],

cost; ;(Pyw) < cost; ; (P,) if and only if cost; j(Pyw) + € < cost; (P, ,,) + €k

R v,w

We now proceed with the same steps of the algorithm we described in Section 4.3 (and 4.3.1)
but with the modified path costs. (Note that we used the same ¢1,...,¢, for all boxes D, ;, thus
we can still use the extended Fredman trick for the new costs.) By the above, ties on the original
costs of (any) two distinct staircase paths break on their new costs, according to their order in L,

while the other relations (<, >) are preserved.

4.4 Geometric Edit Distance in Subquadratic Time

In this section, we show how our DTW algorithm from Section 4.3 can be modified to compute
ged(A, B) (and optimal matching). Recall the definitions of monotone matching (see Figure 4.1.1),
ged(A, B), and optimal matching from Section 4.1.1. First, we overview the standard dynamic
programming algorithm for computing GED between two sequences A = (p1,...,p,) and B =

(q1,---,qn), each of n points in R.

The Quadratic Time GED Algorithm.

1. Initialize an (n + 1) x (n + 1) matrix M and set M]0,0] := 0.

2. For each £ € [n]

2.1. MI[¢,0] := lp, M[0,¢] := £p.

3. For each £ € [n],

3.1. For each m € [n],

3.1.1 M[f,m]:= min{M[e —1,m] +p, M[t,m — 1]+ p, M[£ —1,m — 1] + |p, — qmy}.
4. Return M[n,n].

The optimal matching can be retrieved by maintaining pointers from each (¢, m) to the preceding
position (¢/,m') e {({ —1,m), (¢{,;m — 1), ({ —1,m — 1)} through which M[¢, m] is minimized. By
tracing these pointers backwards from (n,n) to (0,0) and including in the matching only the

positions that we reach “diagonally” (when going backwards), we obtain the optimal matching.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 58

Subquadratic Time GED Algorithm. Recall the all-pairs-distances matrix D and its decom-
position into boxes D; j, as defined in Section 4.3. For a monotone matching M between two
point-subsequences A;, B;, let cost; j(M) be the corresponding sum of distances in the definition
of ged(A;, B;). To adapt our DTW algorithm for GED, we modify the way we evaluate the cost of
a staircase path P in a box D; ;, so that it equals the cost of its corresponding monotone matching
M(P) (defined below).

We view each box D, ; as a weighted directed grid graph G, whose vertices are the pairs of

[g] % [g], and its set of edges is

{(&.m), (¢ +1,m)) [Le[g—1], me[g]}
U{l&m), (&,m + 1)) | L€ [g], me[g—1]}
U{(m), (¢ + 1,m + 1)) | £,me [g— 1]}

We refer to the edges in the first subset as vertical edges, the edges in the second subset as
horizontal edges, and the ones in the third subset as diagonal edges. The weight of the vertical
and horizontal edges is set to p, and the weight of each diagonal edge ((¢,m), (¢ +1,m + 1)) is
|A;(¢) — B;j(m)|. Each staircase path P in D; ; is then a path in the graph G, whose corresponding
monotone matching M(P) is defined to consist of exactly all the pairs of points (A4;(¢), Bj(m))
that correspond to the positions (¢,m) from the diagonal edges ((£,m), (¢ + 1, m + 1)) of the path.

By defining cost; ;(P) to be the weight of its corresponding path in G, we obtain that
cost; j(P) = cost; j(M), and that the dynamic programming matrix M (given above) satisfies
that for each position (¢,m) € [n + 1] x [n + 1], M[¢,m] is the minimal cost of a staircase path
from (0,0) to (¢,m) in D. This implies that Lemma 4.3.1 can be used in this setup too, for com-
puting the values on the R-boundaries of the boxes M; ;, as done in the second stage of our DTW
algorithm. Thus, once we have a corresponding data structure from the preprocessing procedure,
we can apply the second stage of our DTW algorithm verbatim.

As for the preprocessing procedure, the cost of a staircase path in a box D; ; is now a sum of
distances |A;(¢) — Bj(m)|, ¢,m € [g], plus a multiple of the parameter p. Since p is a fixed real
number and the multiple of p in the cost of a staircase path in D; ; only depends on the positions of
the path (and is independent of the actual values of A and B), we can execute a similar machinery
as described in Section 4.3. That is, we can choose a candidate sign assignment as before, get a
linear expression in A;(¢) and B;(m) (which also involves a fixed multiple of p), then, the extended
Fredman trick (4.3) can be applied when comparing the costs of two staircase paths and validating
the correctness of candidate sign assignments. (Our algorithm works also for more general gap
penalty functions, as long as they are linear in the coordinates of the points of A U B.) The rest
of the preprocessing procedure and the extension to high-dimensional polyhedral metric spaces

are similar to those we showed for DTW. In order to lift the general position assumption, a tiny

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 59

modification to what is described in Section 4.3.2 is required; to set € from Section 4.3.2 as the

minimum over the distance of the positive closest pair from A U B and p, the rest is verbatim.
From the above, we obtain that ged(A, B) (and an optimal matching) can be computed in

O(n?/loglogn) time, as stated in Theorems 4.1.1 and 4.1.2 for GED. O

4.5 Near-Linear Depth Decision Trees for Discrete
Fréchet Distance under Polyhedral Metrics

The Fréchet distance is a measure of similarity between curves that takes into account the location
and ordering of the points along the curves. Therefore it is often better than the well-known
Hausdorff distance as a metric for comparing parameterized shapes. This measure was introduced
by Fréchet in 1906 [90].

Eiter and Mannila [78] introduced the discrete Fréchet distance, a variant also known as the
coupling distance. They showed that this distance provides a good approximation for the Fréchet
distance between curves, and provided a quadratic dynamic programming algorithm to compute
it.

Since then many studies have been made about the discrete problem in the Euclidean plane. To
name a few, Agarwal et al. [7] showed a subquadratic algorithm that runs in O(n?loglogn/logn)
time, Buchin et al. [42] showed an algebraic computation tree lower bound of Q(nlogn), and

Bringmann [38] recently showed that there is no algorithm with runtime O(n?~*(1))

, assuming the
Strong Exponential Time Hypothesis (SETH).

While much work has been made on the Euclidean discrete Fréchet distance, the problem in
other metrics, such as Ly and Lo, has been much less investigated.

A related recent lower bound by Bringmann and Mulzer [40] shows that, assuming SETH,
the discrete Fréchet distance cannot be solved in O (n2_9(1)) time even for the one-dimensional
case (with the standard distance function dist(x,y) = | — y|). Their result is relevant to the
problems we investigate in this section, as the one-dimensional case lower bound fits to any L,
norm, 1 < p < o0. In other words, their conditional lower bound holds for the discrete Fréchet
distance under any L, norm, 1 < p < o (including Lo).

From now on, The term M-Discrete Fréchet Distance Decision refers to the decision problem of
determining whether the discrete Fréchet distance is at most some given parameter € > 0, when the
underlying norm is M. The term M-Discrete Fréchet Distance refers to the problem of computing

the actual discrete Fréchet distance, when the underlying norm is M.

Our Results and Related Works. Given two n-point-sequences A, B in R?, our contribution

is stated in the following theorems.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 60

Theorem 4.5.1. There is a 2-linear decision tree with depth O(nlog?n) for the L. -Discrete

Fréchet Distance between A and B, for any constant dimension d.

Theorem 4.5.2. There is a 2d-linear decision tree with depth O(n log? n) for the Li-Discrete

Fréchet Distance between A and B, for any constant dimension d.

Theorem 4.5.3. Given a polyhedral metric> M, there is a 2d-linear decision tree with depth

O(n log2 n) for the M-Discrete Fréchet Distance between A and B, for any constant dimension d.

Theorem 4.5.3 is a generalization of Theorem 4.5.2. However, since the L; metric is a quite
popular polyhedral metric, we feel it is worth stating the L, case separately, as given in Theo-
rem 4.5.2.

As mentioned above, the Q(n?~°(1)) conditional lower bound of Bringmann and Mulzer [40]
holds for the problems that we study. We find the big gap between their near-quadratic conditional
lower bound in the uniform model to our near-linear upper bound in the linear decision tree model
particularity interesting.

In a related result, Buchin et al. [43] showed that the algebraic decision tree complexity of the
Euclidean-Discrete Fréchet Distance problem in the plane is 5(714/ 3). This result is obtained by
using a range searching technique of Katz and Sharir [117]. In Section 4.5.2 we will briefly review
this result, and in Section 4.5.3 we argue that, for the problem under polyhedral metrics (e.g., L1
and L) in RY, the standard range searching approach does not seem capable of giving us the
results we aim for, which we will establish using a different approach.

To prove the theorems above, we use a variant of the extended Fredman’s trick (see Section 2.2).

4.5.1 Problem Statement and Quadratic Algorithm

The Fréchet distance is often illustrated by a man and a dog, each walking along a path (curve).
The man has the dog on a leash. Each of them may choose their own speed and may stop but
cannot walk backwards. Then the Fréchet distance is the length of the shortest leash that allows
them to walk on their respective curves from beginning to end.

More formally, following [78] we define a curve as a continuous mapping f : [0,1] — V, where
(V. p) is a metric space. Given two curves f : [0,1] — V and g: [0,1] — V, their Fréchet distance

is defined as

r(f,9) = inf max p(f(a(t)),q(8(t))),

a,B te[0,1]
where o and § are arbitrary continuous nondecreasing functions from [0, 1] onto [0, 1].
When computing the Fréchet distance between arbitrary curves, one typically approximates the

curves by polygonal curves. Eiter and Mannila [78] defined the discrete Fréchet distance between

2That is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope with a
constant number of facets (this constant generally depends on the dimension d).

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 61

polygonal curves and showed that it gives a good approximation to the Fréchet distance between
them.

A polygonal curve with n edges is a curve P : [0,1] — V, such that for each i € {0,1,...,n—1},
the restriction of P to the interval [£, “1] is affine. Since the Fréchet distance is invariant under
reparametrization, we can assume a polygonal curve P to be given by the ordered list of its vertices,
i.e., a sequence P = (po,...,Pn)-

Let P = (po,...,pn) and Q@ = (qo,...,qm) be two polygonal curves given by their ordered
lists of vertices. As in the study of the DTW distance in Section 4.1, a coupling C' = (co, ...,)
between P and @ is an ordered sequence of distinct pairs of vertices in P, @, such that ¢y = (po, q0),
¢k = (Pns@m) and ¢ = (piy¢5) = ¢r41 € {(Pi+1,95), (Pis @Gi+1)s (Pi+1,¢+1)}. The discrete Fréchet

distance between P and () is

6ar(P,Q) = mi
ar (P, Q) o p(pi, 4j)

Eiter and Mannila [78] showed that

0r(P,Q) < dar (P, Q) < 0p(P,Q) + max{D(P), D(Q)},

where D(P) (resp., D(Q)) is the length of the longest edge in P (resp., Q). Thus, if we add vertices
to the curves P, () so that their edge lengths tend to zero, their discrete Fréchet distance will tend

to their Fréchet distance.

Dynamic Programming Algorithm. Following [78], we quickly review the standard quadratic
dynamic programming algorithm for the decision version of the discrete Fréchet distance, in a
metric space (V, p).

Given two point sequences A = (ay,...,a,), B = (b1,...,b,), and a parameter £ > 0, the
algorithm creates an n x n Boolean matrix M, whose rows and columns correspond to the points
of A and B, respectively. The algorithm fills the matrix with values 0/1 row by row. Every cell
M; ; in the matrix is filled by 1 iff both conditions hold:

1. At least one of the cells M;_1 j, M; j_1, M;_q j—1 is filled with 1.
2. The distance p(a;,b;) is at most e.

Otherwise, M; ; is filled by 0. Intuitively, an entry M; ; is equal to 1 iff the pair (a;, b;) is reachable
from the starting placement (aq,by) of the trip with a “leash” of length . Otherwise, M; ; is equal
to 0.

The runtime of the algorithm is quadratic and the number of input comparisons it makes is also

quadratic, as there are potentially n? distinct pairs of points (a;, b;) to check whether p(a;, b;) < €.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 62

4.5.2 Decision Tree for the Euclidean Plane

Buchin et al. [43] showed a quadratic algebraic decision tree (where each branching is a sign test
of a quadratic expression) with depth O(n*/?log®n) for the Euclidean-Discrete Fréchet Distance in
the plane.

First, they construct a decision tree for the Euclidean-Discrete Fréchet Distance Decision, as
follows. The decision tree is based on invoking the quadratic dynamic programming algorithm
following a preprocessing stage. All the input comparisons in the dynamic programming algorithm
are made by checking if the distance of a point a; € A from a point b; € B is less than the fixed
given parameter €. The preprocessing stage will compute and store the answers for these pairwise
distance queries in a Boolean matrix T := (t;;), where t;; = 1 if ||a; — b;|2 < &, otherwise ¢;; = 0.

Given two point sequences A, B, with |A| = n, |B| = m, and a parameter ¢ > 0, denote, for
each point a € A, the circle of radius € centered at a as ¢,. A point b € B lies inside a circle ¢,
iff ||la — b2 < e. We obtain a set C' of n congruent circles (all of radius ¢) and a set P = B of m
points.

Katz and Sharir [117] showed that one can compute a compact representation of the set of pairs
of the form (c,p), where p € P, ¢ € C, and p lies inside ¢, in O ((m2/3n2/3 +m +n)log n) time
(and thus, this bound holds also for the number of input comparisons). This information suffices
to construct T and invoke the dynamic programming algorithm in O(mn) time, but without using
any further input comparisons. Thus, when |A| = |B| = n, the number of input comparisons is
O(n*3logn).

Agarwal et al. [7] showed that the optimization problem can be solved by using a distance se-
lection algorithm in the plane (that returns the k-th smallest distance in A x B, for any prespecified
k) to guide a binary search, using the decision procedure. Overall, there are O(logn) calls to the de-
cision procedure and to the distance selection algorithm. The distance selection algorithm of Katz
and Sharir [117] runs in O(n*?log? n) time. Thus, in total, we obtain that the quadratic algebraic

decision tree complexity of Euclidean-Discrete Fréchet Distance in the plane is O (n4/ 3log® n)

4.5.3 Decision Trees for the Decision Problem under Polyhedral Metrics

Similar to the Euclidean case, range searching techniques can also be used for the Discrete Fréchet
Distance Decision problem under other metrics, for computing the pairwise distance queries in the
decision tree. However, as we now show, these techniques, when routinely implemented for the
Lo, or Ly metrics in R?, will give weaker bounds than those we aim for in Theorem 4.5.2 and
Theorem 4.5.1.

The simpler case is for the L, metric, for which the unit ball in R? is a d-dimensional hyper-
cube. One can compute a d-dimensional range tree data structure for the points of A, in time

O(n logd~! n). For each point b = (b1,...,bq) € B, denote by ¢, its corresponding d-sphere (under

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 63

L) of radius ¢, centered at b. Clearly, ¢; is a d-dimensional hypercube of side-length 2¢.

For each b € B, we query the range tree with its corresponding hypercube c¢;. This will give us a
compact representation of all the points of A that lie in ¢;. The cost of a query in a d-dimensional
range tree is O(log?n). Using fractional cascading, this can be improved to O(log?™! n) time. In
total, this approach leads to a 2-linear decision tree of depth O(n logd_1 n).

For the L; metric, its unit ball is a d-dimensional cross-polytope with 2¢ facets. Thus, the most
naive querying such a ball will require 2¢ queries, each performing O(logn) 2d-linear comparisons,
resulting in a 2d-linear decision tree of depth O(n log2d n).

The range searching data structure is appropriate also when the queries are not known in
advance. Using Fredman’s trick, we leverage the fact that in our case all the queries are known in

advance, to obtain better decision trees.

Decision Tree for L,-Discrete Fréchet Distance Decision. We start by presenting a 4-linear
decision tree with depth O(nlogn) for the L;-Discrete Fréchet Distance Decision in R?, and then we
explain how to modify it to obtain a 2d-linear decision tree with depth O(nlogn) for the problem
in R%. In Section 4.5.4 we will show how to solve the optimization problem by running through
this decision tree O(logn) times. This will prove Theorem 4.5.2.

The following property allows us to apply Fredman’s trick on pairwise distance queries under
the L; norm.

For any real numbers z,y,z € R, with z > 0, |z| + |y| < z if and only if all the following

inequalities hold.

r+y <z, r—1y <z,

—r+y <z, —r-ysz
Since the L; distance between a point a; = (z;,y;) and a point b; = (x;,y;) is defined by
la; = bjlly = |z — x| + lyi — ys1,

the property above leads to the following observation.

Observation 4.5.4. For a; = (xi,y;), bj = (zj,y;) € R?, |a; — bj|1 < € if and only if all the

following inequalities hold.

ity STy +y; +e,
T —Yi S T; —Y;tE,
—Ti tYi S —TjtY;t+E,

—T; — Y < —T; —Y; +E.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 64

This observation is a sort of generalization of Fredman’s trick for the L; distance between two
points in the plane.
Recall that we are given two point sequences in the plane A = (a1,...,a,), B = (b1,...,bn),

and a distance parameter €. The following algorithm determines whether d4r (A4, B) < e.
1. Sort Dy := {z; + y;, :17; + y; +elai=(zi,yi) € A, bj = (x}y;) € B}.
2. Sort Do := {z; — yi, m; — y; +elai = (xi,y:) € A, bj = (w}yﬁ) € B}.
3. Sort D3 := {—z; + y;, —x} + y; +ela; = (zi,yi) € A, by = (wg,yg) € B}.
4. Sort Dy :={—x; —yi, =2 —yj +e|a; = (xi,y:) € A, bj = (2}, y;) € B}.

5. Using Observation 4.5.4, given the sorted orders on D1, ..., Dy, construct the n x n Boolean

matrix

1 if Ja; — b1 <€
T := (t;;), where t;; = Y

0 otherwise.
6. Invoke the dynamic programming algorithm using 7" to settle all the distance queries.

Steps 1-4 require O(nlogn) comparisons. Using Observation 4.5.4, Step 5 requires no compa-
risons (on the raw data) at all, given the sorted orders on Dy, ..., Dy. Specifically, to test whether
[a; —bjll1 < €, we test the four corresponding inequalities from Observation 4.5.4. Each inequality
test is resolved by the sorted orders on Dy, ..., D4. Step 6 requires no comparisons on the input
data, given the matrix 7" from Step 5. All comparisons are sign tests of 4-linear expressions. In
total, the number of comparisons is O(nlogn). The algorithm can be implemented to run in O(n?)
time (in the uniform model), using only O(nlogn) input comparisons.

The algorithm can easily be extended to RY, by using additional sorting steps (similar to
steps 1-4), which lead to a 2d-linear decision tree with depth O(nlogn) (where the constant

of proportionality depends exponentially on d). A generalization of Observation 4.5.4 to points

ai = (i1, Tia), bj = (¥j1,...,7;4) in R? leads to 2¢ inequalities, each defined by a vector
§ e {—1,1}%, and has the form
d d
ik < Y. Okjn + €. (4.10)
k=1 k=1

Each such inequality is a 2d-linear expression. Thus, for the same problem in R, the algorithm

has 2¢ sorting steps, and all comparisons are sign tests of 2d-linear expressions.

Decision Tree for Ly -Discrete Fréchet Distance Decision. The previous algorithm can easily
be modified (and simplified) for the Ly-Discrete Fréchet Distance Decision problem, but now each
comparison will use only two of the input terms, unlike the previous algorithm, where each com-

parison used 2d input terms. As before, we first consider the problem in R?, and later extend it to

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 65

R?. The Ly, distance between a point a; = (x;,y;) € R? and a point b; = (x;,y;) € R? is defined

by llai =bjlln = max{la; — [, [y: — y;[}. Hence,
lai = bjlec <& < (loi -l <€) A (lyi —ysl < €).

Thus we obtain the following observation.

Observation 4.5.5. For a; = (z;,yi), b; = (zj,y;) € R%, |a; — bj| < € if and only if all the

following inequalities hold.

T; < T +E, T; < x; +E,

Yi S Y; + ¢ Y <y e

This leads to the following variant of the previous algorithm given above, where the sets to be

sorted in Steps 1-4 are:

Dy = {zi, 2y + e | ai = (z4,y:) € A, bj = ()

Dy :={z, xi+e|ai = (vi,y:) € A, bj = (2}, 9))

Dy :={yi, yj +¢ | ai = (xi,y:) € A, bj = (2},9}) € B},
= ()

Dy := {?J;a yi+elai=(zi,y:) € A by = (x}yé

Using Observation 4.5.5, given the sorted orders on Dy, ..., Dy, one can construct the Boolean
matrix T" from Step 5 with no further comparisons. Then, one can invoke the dynamic programming
algorithm and use T for the distance queries, as in Step 6.

Similarly to the L; norm, the above algorithm uses O(n logn) input comparisons, each of which
is a sign test of a 2-linear expression, and can be implemented to run in O(n?) time (in the uniform
model).

Following a generalization of Observation 4.5.5 to points in R?, the algorithm can be extended
to R? by adding additional sorting steps. We have 2d sorting steps for the problem in R¢, two for
each coordinate. Each comparison will still be a 2-linear expression. Thus in total we obtain a
2-linear decision tree with depth O(nlogn) for the problem in R?, for any constant d. Here the

constant of proportionality depends only linearly on d.

Extension to General Polyhedral Metrics in R%. The decision tree described above can be
extended to work under general polyhedral metrics in R?, for any constant d. That is, we assume
that the underlying metric is induced by a norm, whose unit ball K is a symmetric convex polytope
with |K| = O(1) facets. Each facet of K corresponds to (at most) 2d-linear expression, similar

to (4.10) but possibly with coefficients that are different from 1. Thus, after |K| sorting steps we

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 66

can use Fredman’s trick to obtain the matrix 7" from Step 5 with no further comparisons on the

input data. The rest of the algorithm proceeds more or less verbatim.

4.5.4 Solving the Optimization Problem

In Section 4.5.3 we gave 2d-linear decision trees with depth O(nlogn), for the Discrete Fréchet
Distance Decision problem under general polyhedral metrics, and a 2-linear decision tree with
depth O(nlogn) for the Lo-Discrete Fréchet Distance Decision problem. In order to prove our
results, we next show how to solve the Discrete Fréchet Distance optimization problem using a
corresponding linear decision tree with depth O(nlog2 n).

We start with the Ly-Discrete Fréchet Distance problem. Then, we show how to extend our

approach for Ly, and then for general polyhedral metrics.

Ly-Discrete Fréchet Distance. Our procedure is similar to one we will give in Section 5.4, for
finding the closest pair of points under the L., metric in R¢, using the decision procedure for this
problem. Thus, here we will give only the general idea, and we refer the reader to Section 5.4 for
more technical details, as the procedures are more or less verbatim.

We are given two point-sequences A = {a1,...,a,}, B = {b1,...,b,} in RZ The solution dy,
for the Ly-Discrete Fréchet Distance in R?, is one of the O(dn?) values a;[k] — b;[k], i,j € [n],
k € [d]. For each k € [d], we sort the points of A and B in increasing order of their k-th coordinate.
This takes O(dnlogn) comparisons in total. Let (agk)7 e ,aslk)> and (bgk), ey b%k)) denote the
sequences of the points of A and B sorted in increasing order of their k-th coordinate, respectively.

For each k € [d], let M*) be an n x n matrix, so that for i, j € [n], we have
. k k
M®i, 5] = af k] - b7 [k].

We view the row indices from bottom to top, i.e., the first row is the bottommost one, and the
column indices from left to right. We are in fact interested only in the upper triangular portion of
M®) where its elements are positive, but for simplicity of presentation, we can ignore this issue
(since for negative values the decision procedure will always return false anyway).

Observe that each row of M(*) is sorted in decreasing order and each column is sorted in
increasing order. Under these conditions, the selection algorithm of Frederickson and Johnson [91]
can find the ¢-th-smallest element of M), for any 1 <t < n?, in O(n) time.?

We use this method to conduct a simultaneous binary search, using the decision procedure
from Section 4.5.3, over all d matrices M*), to find . At each step of the search we maintain

two counters Lj, < Hy, for each k. Initially L = 1 and Hy = n?. The invariant that we maintain

3Simpler algorithms can select the t-th-smallest element in such cases in O(nlogn) time, which is also sufficient
for our result.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 67

is that, at each step, dy lies in between the Lj-th and the Hy-th smallest elements of M®) for
each k.

For more technical details, we refer the reader to the procedure in Section 5.4, which is more or
less verbatim. Overall, this procedure stops after O(log n+1logd) calls to the corresponding decision
procedure from Section 4.5.3 and O(dlogn) calls to the the selection algorithm of Frederickson
and Johnson [91]. Thus, in total, we obtain that the number of input comparisons is bounded
by O(nlog? n), for any constant d. Note that each comparison we made involves only two input
terms, thus we obtain a 2-linear decision tree with depth O(n log2 n), for any constant d, where

the constant of proportionality depends linearly on d. This completes the proof of Theorem 4.5.1.

L;-Discrete Fréchet Distance. The technique described above for the Ly metric can easily be
extended to the L; metric. The L; distance between a pair of points a,b € R? is ZZ=1 la[k] — b[K]],
which can be written as 22:1 0[k] (al[k] — b[k]), for a suitable sign vector § = (§[1], ..., d[d]), which
depends on a and b, where each of its entries d[i], i € [d], is 1 or —1.

We iterate over all 2¢ sign vectors. For each such vector §, we form the following two sequences,

each of which is sorted in increasing order, A = (a§5), e ag)) and B = (b§‘”, ce bg{s))7 where

4

al? = i S[k]as[k]
k=1

b = zdj S[k]bs[k],
k=1

for ¢ € [n]. Then, for each pair a; € A, b; € B, there exists a sign vector ¢ such that the L; distance
(6)

i

between a; and b; is a

M® 5o that

— bg&). In analogy with the Lo, case, we define, for each §, the matrix

MO, j] = ol = b,

for i,j € [n]. As before, each row (resp., column) of each of these matrices is sorted in increasing
(resp., decreasing) order (since the sequences A(®) and B(®) are sorted in increasing order). We now
have to search simultaneously through all these 2¢ matrices for the entry that gives the discrete
Fréchet distance between A and B, and we do it in full analogy to the way it was done in the
L, case, except that the number of matrices increases from d to 2¢. Thus, we pay O(2%nlogn)
comparisons to sort the elements of A and B, for each possible sign vector 8. We have
O(logn + d) calls to the corresponding decision procedure from Section 4.5.3 and O(2%logn) calls
to the the selection algorithm of Frederickson and Johnson [91]. Thus, in total, we pay O(nlog®n)

comparisons, for any constant d, where the constant of proportionality depends exponentially on d.

4Note the slight abuse of notation, as the order of the indices in the sorted sequences A and B®) depends on
the sign vector 4.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 68

This completes the proof of Theorem 4.5.2.

Discrete Fréchet Distance under General Polyhedral Metrics. The case of a general poly-
hedral metric is handled similarly to the L; and Ly, cases. For each facet f of the unit ball K
of the metric, with normal vector ng, we form the following two sequences, each one is sorted in
increasing order, A) = (agf), . a%f)) and BY) = (bgf), . ,b%f)), where ®

af”) = (ai,ny)
b = bimy),

for i € [n]. Then, for each pair a; € A, b; € B, there exists a facet f such that the polyhedral
(f) _ph)
J

distance between a; and b; is a; . This allows us to adapt the algorithm for the L; distance
to this case too, where the number of matrices in which we search is the number of facets |K| of
the unit ball K of the metric.

In this case, we pay O (|K|nlogn) comparisons to sort the elements of AY) and B/). We have
O(logn+log|K]) calls to the corresponding decision procedure from Section 4.5.3 and O (| K|logn)
calls to the the selection algorithm of Frederickson and Johnson [91]. Thus, in total, we pay
O(nlog®n) comparisons, for any constants d and |K|, where the constant of proportionality de-

pends linearly on the number of facets |K|. This completes the proof of Theorem 4.5.3.

5Here too, the order of the indices in the sorted sequences A(®) and B(®) depends on the facet f.

Chapter 5

High Dimensional Closest Pair

under L, and Dominance Product

69

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 70

5.1 Background

Finding the closest pair among a set of n points in R? was among the first studied algorithmic
geometric problems, considered at the origins of computational geometry; see [136, 144]. The
distance between pairs of points is often measured by the L. metric, for some 1 < 7 < o0, under

which the distance between the points p; = (p;[1],...,p:[d]) and p; = (p;[1],...,p;[d]) is

d 1/7
dist, (pi,pj) = |pi — pjll- = (Z |pi[k] —Pj[k]|T> :
k=1

for 7 < o0, and

distor (i ;) = [pi = pjloo = max |pi[k] — p;[F]],

for 7 = o0. The Closest Pair problem and its corresponding decision variant, under the L, -metric,

are defined as follows.

Closest Pair: Given a set S of n points in R?, find a pair of distinct points Di,pj € S such that

dist, (p;, p;) = minge,, {dist-(pe, pm) | Pe, Pm € S}.

Closest Pair Decision: Given a set S of n points in R?, and a parameter 6 > 0, determine

whether there is a pair of distinct points p;, p; € S such that dist,(p;, p;) < 9.

Throughout this chapter, the notation L, Closest Pair refers to the Closest Pair problem under some
specific metric L., for 1 < 7 < o0 (and we will mostly consider the case 7 = o).

In the algebraic computation tree model, the Closest Pair problem has a complexity lower bound
of Q(nlogn) (for any L, metric), even for the one-dimensional case d = 1, as implied from a lower
bound for the Element-Uniqueness problem [31].

As for upper bounds, Bentley and Shamos [32,33] were the first who gave a deterministic
algorithm for finding the closest pair under the Lo metric that runs in O(nlogn) time for any
constant dimension d > 1, which is optimal in the algebraic computation tree model, for any fixed
d. Their algorithm uses the divide-and-conquer paradigm, and became since, a classical textbook
example for this technique. In 1976 Rabin presented, in a seminal paper [139], a randomized
algorithm that finds the closest pair in O(n) expected time, using the floor function (which is
not included in the algebraic computation tree model). His algorithm uses random sampling to
decompose the problem into smaller subproblems, and uses the floor function in solving them, for
a total of O(n) expected time. Later, in 1979, Fortune and Hopcroft [89] gave a deterministic
algorithm that uses the floor function, and runs in O(nloglogn) time.

The bounds above hold as long as the dimension d is constant, as they involve factors that are
exponential in d. Thus, when d is large (e.g., d = n), the problem seems to be much less understood.

Shamos and Bentley [33] conjectured in 1976 that, for d = n, and under the Lo metric, the problem

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 71

can be solved in O(n? logn) time; so far, their conjectured bound is considerably far from the O(n®)
state-of-the-art time bound for this case [112], where w < 2.373 denotes the exponent for matrix
multiplication (see below). If one settles for approximate solutions, many efficient algorithms
were developed in the last two decades, mostly based on LSH (locality sensitive hashing) schemes,
and dimensionality reduction via the Johnson-Lindenstrauss transform; see [13,19] for examples
of such algorithms. These algorithms are often used for finding approzimate nearest neighbors,
which itself is of major importance and in massive use in many practical fields of computer science.
Nevertheless, finding an exact solution seems to be a much harder task.

We consider the case where d depends on n, assuming specifically that d = n” for some r > 0.
Note that a naive brute-force algorithm runs in O(n?d) time and works for any metric L,. For some
L, metrics, a much faster solution is known; see [112]. Specifically, the Ly Closest Pair problem
can be solved by one algebraic matrix multiplication, so for example when d = n, it can be solved
in O(n*) time (as already mentioned above). If 7 > 2 is an even integer, then L, Closest Pair can
be solved in O(mn*) time. However, for other L, metrics, such as when 7 is odd (or fractional), or
the Ly, metric, the known solutions are significantly inferior.

For the L; and Lo, metrics, Indyk et al. [112] obtained the first (and best known until now)

non-naive algorithms for the case d = n. For Ly, they gave an algorithm that runs in O (nw;3) =
O(n%%87) time, and for L, one that runs in O (anH log D) = O(n*%71og D) time, where D is
the diameter of the given point-set. The bound for Ly, is weakly polynomial, due to the dependence
on D, and, for real data, only yields an approximation. Their paper is perhaps the most related
previous work to our study.

Our new approach is based on two main observations. The first is showing a reduction from L,
Closest Pair Decision to another well-studied problem, dominance product. The second is by showing
we can solve the optimization problem deterministically by executing the decision procedure only
O(logn) times.

We also give improved runtime analysis for the dominance product problem, defined as follows.

Dominance Product: given a set S of n points pq,...,p, in R? compute a matrix D such

that for each ¢, j € [n], D[i,j] = {k | pi[k] < p;[k]}|-

This matrix is called the dominance product or dominance matrixz for S. For d = n, there is a non-
trivial strongly subcubic algorithm by Matousek [129] (see Section 5.2), and a slightly improved one
by Yuster [158]. For d < n, there are extensions of Matousek’s algorithm by Vassilevska-Williams,
Williams, and Yuster [149]. All of them use fast matrix multiplications.

Dominance product computations were liberally used to improve some fundamental algorithmic
problems. For example, Vassilevska-Williams, Williams, and Yuster [149] gave the first strongly
subcubic algorithm for the all pairs bottleneck paths (APBP) problem, using dominance product

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 72

computations. Duan and Pettie [74] later improved their algorithm, also by using dominance
product computations. Yuster [158] showed that APSP can be solved in strongly subcubic time
if the number of distinct weights of edges emanating from any fixed vertex is O(n%33%). In his

algorithm, he uses dominance product computation as a black box.

5.1.1 Summary of Our Results

Let DP(n,d) denote an upper bound on the runtime of computing the dominance product (defined
above) of n points in R?. We obtain the following results for the L., Closest Pair problem in R?

where d = n", for some r > 0.

Theorem 5.1.1. Ly Closest Pair can be solved by a deterministic algorithm that runs in

O(DP(n,d)logn) time.

Theorem 5.1.1 improves the O(n?%71og D) time bound of Indyk et al. [112] (see above) in two

2.687 2.684

aspects. First, the polynomial factor n goes slightly down to DP(n,n) = n , which we
then improve further to n2:6°98 in Theorem 5.1.4; this holds also for Theorem 5.1.2, stated below.
The second aspect is that the log D factor is replaced by a log n factor, which makes our algorithm
strongly-polynomial, independent of the diameter of the given point-set, and yields an exact result
also for points with real coordinates.

For the proof of Theorem 5.1.1, we first show a reduction from Ly, Closest Pair Decision to
dominance product computation, then we show that the optimization problem can be solved de-

terministically by executing the decision procedure only O(logn) times.

Theorem 5.1.2. Ly, Closest Pair can be solved by a randomized algorithm that runs in O(DP(n,d))

expected time.

Theorem 5.1.3. For points with integer coordinates from [—M, M|, Ly, Closest Pair can be solved

by a deterministic algorithm that runs in O (min{Mn“®m DP(n,d)}) time.

From Theorem 5.1.3 we obtain that for n points in R™ with small integer coordinates we can
solve the optimization problem in O(n*) time, which is a significant improvement compared to the
general case from Theorems 5.1.1 and 5.1.2.

Additionally, we give a coherent spelled-out runtime analysis for obtaining the best bounds
for DP(n,d), for the entire range d = n", where 0 < r < 1.056, using rectangular matrix multi-
plications. We demonstrate the use of our analysis by plugging into it the improved bounds for
rectangular matrix multiplication by Le Gall [124], resulting in the bounds given below. Recently,
Le Gall and Urrutia [126] reported further improvements on the bounds given in [124]. Their new
bounds can be plugged into our analysis to give approximately 0.01 improvements on the exponents

given below.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 73

Theorem 5.1.4. Given a set S of n points py,...,p, in R, the dominance product of S can be

computed in O(DP(n,d)) time, where

. w=1
d0'697n1'896 + n2+o(1) lf d <nz < n0.687
d0'909n1‘75 lf n0'687 <d< n0,87

DP(n,d) < <
d0‘921n1'739 Zf n0.87 <d< n0.963
d0'931n1'73 Zf n0.963 < d < n1.056

\

26598 (using a more precise calculation), which

In particular, we obtain that DP(n,n) = n
improves Yuster’s O(n?%4) time bound. As mentioned above, this bound can be slightly improved,

using the new rectangular matrix multiplication bounds of Le Gall and Urrutia [126].

5.2 Dominance Product

Recall the dominance product problem: given n points py,...,p, in R? we want to compute a

matrix D such that for each i, j € [n],
Dli, j] = |{k | pi[k] < p;[K]}|.

It is easy to see that the matrix D can be computed naively in O(dn?) time. Note that, in terms
of decision tree complexity, it is straightforward to show that O(dnlogn) pairwise comparisons
suffice for computing the dominance product of n points in R?. However, the actual best known
time bound to solve this problem is significantly larger than its decision tree complexity bound.
The first who gave a truly subcubic algorithm to compute the dominance product of n points in
R™ is Matousek [129]. We first outline his algorithm, and then present our extension and improved

runtime analysis.

Theorem 5.2.1 (Matousek [129]). Given a set S of n points in R™, the dominance matriz for S

n2‘687)

can be computed in O(nHTw) = O(time.

Proof. For each j € [n], sort the n points by their j-th coordinate. This takes a total of O(n?logn)
time. Define the j-th rank of point p;, denoted as r;(p;), to be the position of p; in the sorted

list for coordinate j. Let s € [logn,n] be a parameter to be determined later. Define n/s pairs

(assuming for simplicity that n/s is an integer) of n x n Boolean matrices (A1, B1), ..., (Ay/s, Byys)
as follows:
o 1 if rj(p;) € [ks, ks + s) o 1 ifrj(p;) = ks+s
Agli, j] = Byli, j] =

0 otherwise, 0 otherwise,

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 74

for i,j € [n]. Put Cy = Ay - BY. Then Cg[i,j] equals the number of coordinates ¢ such that
re(pi) € [ks, ks + s), and r¢(p;) = ks + s.

Thus, by letting C' = Zz/jl C%, we have that C[i, j] is the number of coordinates ¢ such that
pilt] < p[t] and [re(ps)/s] < Lr2(p3)/5.

Next, we compute a matrix E such that E[i,j] is the number of coordinates ¢ such that
pilt] < p;[t] and |r¢(p;)/s| = |r¢(p;)/s]. Then D := C + E is the desired dominance matrix.

To compute E, we use the n sorted lists we computed earlier. For each pair (i,7) € [n] x [n],
we retrieve ¢ := r;(p;). By reading off the adjacent points that precede p; in the j-th sorted list
in reverse order (i.e., the points at positions ¢ — 1, ¢ — 2, etc.), and stopping as soon as we reach a
point py such that |r;(px)/s] < |rj(pi)/s|, we obtain the list p;,,...,p; of I < s points such that
pi, 7] < pil] and |r;(p:)/s| = |rj(pi,)/s|. For each x =1,...,l, we add a 1 to E[i,,i]. Assuming
constant time lookups and constant time probes into a matrix (as is standard in the Real RAM
model), this entire process takes only O(n?s) time. The runtime of the above procedure is therefore

O(n?s + 2 -n¥). Choosing s = n“T", the time bound becomes O(nHTw) O

Yuster [158] has slightly improved this algorithm to run in O(n?-%%%) time, by using rectangular

matrix multiplication.

5.2.1 Generalized and Improved Bounds

We extend Yuster’s idea to obtain bounds for dimension d = n", for the entire range r > 0, and,
at the same time, give an improved time analysis, using the recent bounds for rectangular matrix
multiplications of Le Gall [124] coupled with an interpolation technique. This analysis is not
trivial, as Le Gall’s bounds for w(1,r, 1) are obtained by solving a nonlinear optimization problem,
and are only provided for a few selected values of r (see Table 1 in [124]). Combining Le Gall’s
exponents with an interpolation technique, similar to the one used by Huang and Pan [109], we
obtain improved bounds for all values d = n", for any r > 0.

Note that the matrices Ay and By, defined above, are now n x d matrices. Thus, the sum C

defined earlier, can be viewed as a product of block matrices

BY
C=[A1 Ay - An/s]' By

BT

n/s

Thus, to compute C we need to multiply an n x (dn/s) matrix by a (dn/s) x n matrix. Computing
E in this case can be done exactly as in Matousek’s algorithm, in O(nds) time.

Consider first the case where d is small; concretely, d < n“%". In this case we compute C' using

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 75

r w ¢
ro = 1.0 | wg = 2.372864 | (o = 0.6865
ry =11 | w; =2456151 | (1 =0.7781
ro = 1.2 | wy =2.539392 | (3 = 0.8697
r3 = 1.3 | wy = 2.624703 | (3 = 0.9624
ry =14 | wy =2.711707 | {4 = 1.0559

Table 5.1: The relevant entries from Le Gall’s table (Table 1 in [124]), the value for wy is taken
from [125]. The dominance product can be computed in O(n“#) time, for dimension d; = n%.

the following result by Huang and Pan.

Lemma 5.2.2 (Huang and Pan [109]). Let a = sup{0 <r <1 |w(l,r,1) =2+ o(1)}. Then for

w—2 2—wa
alln® < m < n, one can multiply an n X m matriz with an m X n matriz in time O (m T—an -«) .

Huang and Pan [109] showed that o > 0.294. Recently, Le Gall [124] improved the bound on
a to a > 0.302. By plugging this into Lemma 5.2.2, we obtain that multiplying an n x m matrix
with an m x n matrix, where n® < m < n, can be done in time O(m0-535n1-839),

From the above, computing C' and E can be done in O ((dn/s)?***n!-839 4+ dns) time. By
choosing s = n%89%/d0-303 " the runtime is asymptotically minimized, and we obtain the time
bound O(d’-%97n!-896). This time bound holds only when n® < n%3%2 < dn/s < n, which yields

the time bound

O(dO-697p 1896 | n2+0(1))’ for d < n(@—1)/2 < ;0687

We now handle the case d > n(“~Y/2, Note that in this case, dn/s > n (for s as above),
thus, we cannot use the bound from Lemma 5.2.2. Le Gall [124] gives a table (Table 1 in [124])
of values r (he refers to them as k), including values of r > 1 (which are those we need), with
various respective exponents w(1,7,1). We will confine ourselves to the given bounds for the values

r1=1.1,7r9 = 1.2, r3 = 1.3, and r4 = 1.4. We denote their corresponding exponents w(1,r;,1) by
w1 < 2456151, wy < 2539392, w3 < 2.624703, wq < 2.711707

respectively. The exponent for ro = 1 is wy = w < 2.372864 (see [125,155]).
The algorithm consists of two parts. For a parameter s, that we will fix shortly, the cost of
computing C = A - BT is O (n“"), where w, is a shorthand notation for w(1,7,1), and where
2,7

n" = dn/s, and the cost of computing E is O(nds) = O (s?n"). Dropping the constants of

proportionality, and equating the two expressions, we choose
s =nr=m)/2, that is, d=sn"! = plortn2=1 — pér

for ¢, = (w, +71)/2 — 1. Put (; = (,, for the values ro, ..., rs mentioned earlier; see Table 5.1.

Now if we are lucky and d = n, for i = 0,1,2,3, 4, then the overall cost of the algorithm is

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 76

Cmin Cmax U v

0.687 | 0.87 | 0.909 | 1.75
0.87 | 0.963 | 0.921 | 1.739
0.963 | 1.056 | 0.931 | 1.73

Table 5.2: The time bound for computing dominance product for n points in dimension némn <
d < nbmax is O (dUnV).

O(n¥i). For in-between values of d, we need to interpolate, using the following bound, which is
derived in the earlier studies (see, e.g., Huang and Pan [109]), and which asserts that, for a < r < b,

we have
(b—1)wa + (r —a)ws
b—a '

(5.1)

Wy <

That is, given d = n¢, where ¢; < ¢ < (;11, for some i € {0,1, 2,3}, the cost of the algorithm will

be O (n“r), where r satisfies
Wy + 17

C=¢r = 9 L

Substituting the bound for w, from (5.1), with a = r; and b = r; 1, we have

(riz1 —r)wi + (r — r)wig1

Tivl — Ty

+r=2(C+1).

Eliminating r, we get
,— 2(¢ + 1)(rig1 — 7)) — mip1wi + 1w

, (5.2)
Wit1 + Tig1 — Wi — T
and the cost of the algorithm will be O (n“r), where
o < (ric1 —mw; + (r — Ti)(di+1' (5.3)

Titl —Ti

Note that r is a linear function of {, and so is w,. Writing w, = u{ + v, the cost is
O(n*“)=0 (n““”) =0 (d"n").

The values of u and v for each of our intervals are given in Table 5.2. (The first row covers
the two intervals 1.0 < r < 1.1 and 1.1 < r < 1.2, as the bounds happen to coincide there.) See
also Theorem 5.1.4 in Section 5.1.1. We have provided explicit expressions for DP(n,d) only for
d < n% = nt9%6 which includes the range d < m, which is the range one expects in practice.
Nevertheless, the recipe that we provide can also be applied to larger values of d, using larger
entries from Le Gall’s table [124]. As mentioned earlier, the exponents we obtained for DP(n, d)
can be even slightly further improved by approximately 0.01, by plugging into our analysis the
recent new bounds for rectangular matrix multiplication of Le Gall and Urrutia [126] (see Table 3

in [126)).

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 77
5.3 Reducing L., Closest Pair Decision to Dominance Product

Recall that, given a set S of n points p1, ..., p, in R%, the Lo, Closest Pair problem is to find a pair
of points (p;,p;), such that i # j and |p; — p;|, = mingzmern] [Pe — Pml,- The corresponding
decision version of this problem is to determine whether there is a pair of distinct points (p;,p;)
such that |p; — pj||, < 9, for a given § > 0.

Naively, we can compute all the distances between every pair of points in O(n%d) time, and
choose the smallest one. However, as we see next, a significant improvement can be achieved, for
any d = n", for any r > 0.

Specifically, we first obtain the following theorem.

Theorem 5.3.1. Given a parameter § > 0, and a set S of n points p1,...,pn in R, the set of all

pairs (pi, pj) with |p; — pjll, < 9, can be computed in O(DP(n,d)) time.
Proof. First, we note the following trivial but useful observation (also noted in Section 4.5).

Observation 5.3.2. For a pair of points p;,p; € RY, |p; — p;|,, < 0 < pi[k] < pj[k] + 6 and
pilk] < pi[k] + 0, for every coordinate k € [d].

Indeed, a pair of points (p;,p;) satisfies [p; —p;,, = maxyeq) [pi[k] — pj[k]| < 6 < for
every coordinate k € [d], |pi[k] — p;[k]| < 0. The last inequalities hold iff p;[k] — p;[k] < 6 and
p;ilk] — pilk] < 9, or, equivalently, iff p;[k] < p;[k] + 0 and p;[k] < p;[k] + 0, for each k € [d].
Although the rephrasing in the observation is trivial, it is crucial for our next step. It can be
regarded as a (simple) variant of Fredman’s trick (see Section 2.2 and [92]).

For every i € [n] we create a new point p,; = p; + (,4,...,0). Thus in total, we now have 2n

points. Concretely, for every i € [n], we have the points

pi =(plll, pil2l, ..., pld),
pnvi = (pilll+0, pil2]+6, ..., pld]+6).

We compute the dominance matrix Dg for these 2n points, using the algorithm from Section 5.2.1.
By Observation 5.3.2, a pair of points (p;,p;) satisfies

lpi — pjll,, <8 = (Dsli,n+ 5] =d) A (Dslj,n+i] =d),

so we can find all these pairs in O(n?) additional time. Clearly, the runtime is determined by
the time bound of computing the dominance matrix Ds (which is at least quadratic), that is,

O(DP(n, d)). O

The proof of Theorem 5.3.1 shows that solving the L., Closest Pair Decision is not harder than

computing the dominance matrix for n points in R%.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 78
5.4 Solving the Optimization Problem

The algorithm from Theorem 5.3.1 solves the Lo, Closest Pair Decision problem. It actually gives
a stronger result, as it finds all pairs of points (p;,p;) such that |p; —p;|,, < d. We use this
algorithm in order to solve the optimization problem Lo, Closest Pair.

As a “quick and dirty” solution, one can solve the optimization problem by using the algorithm
from Theorem 5.3.1 to guide a binary search over the diameter D of the input point set, which is at
most twice the largest absolute value of the coordinates of the input points. If the coordinates are
integers then we need to invoke the algorithm from Theorem 5.3.1 O(log D) times. If the coordinates
are reals, we invoke it O(B) times for B bits of precision. However, the dependence on D makes
this method weakly polynomial, and, for real coordinates, only yields an approximation. As we
show next, this naive approach can be replaced by strongly-polynomial algorithms, a deterministic
one that runs in O(DP(n,d)logn) time, and a randomized one that runs in O(DP(n,d)) expected

time.

5.4.1 Strongly-Polynomial Subcubic Algorithms

Theorem 5.4.1. Given a set S of n points p1,...,pn in RY, the Ly, Closest Pair problem can be
solved for S in O(DP(n,d)logn) time.

Proof. Since the distance between the closest pair of points, say p;, p;, is
%o = lpi = pil, = max pilk] — p;[K]|,

it is one of the O(n?d) values p¢[k] — pm[k], £,m € [n], k € [d]. Our goal is to somehow se-
arch through these values, using the decision procedure (i.e., the algorithm from Theorem 5.3.1).
However, enumerating all these values takes Q(n?d) time, which is too expensive, and pointless
anyway, since by having them, the closest pair can be found immediately. Instead, we proceed in
the following more efficient manner.

For each k € [d], we sort the points of S in increasing order of their k-th coordinate. This
takes O(dnlogn) time in total. Let (pgk), . ,pglk)) denote the sequence of the points of S sorted
in increasing order of their k-th coordinate.! For each k, let M*) be an n x n matrix, so that for
i,j € [n], we have

M® i, 5] = pP[k] - [k

We view the row indices from bottom to top, i.e., the first row is the bottommost one, and the
column indices from left to right. We are in fact interested only in the upper triangular portion of

M®) | where its elements are positive, but for simplicity of presentation, we ignore this issue.

INote the slight abuse of notation, as the order of the indices in the sorted sequence (pgk), o ,pgf)) depends on

k.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 179

Observe that each row of M®*) is sorted in decreasing order and each column is sorted in in-
creasing order. Under these conditions, the selection algorithm of Frederickson and Johnson [91]
can find the t-th-smallest element of M®*) for any 1 < ¢t < n?, in O(n) time.?> (Simpler algo-
rithms for this selection problem that achieve the same runtime were given later by Mirzaian and
Arjomandi [131], and very recently also by Kaplan, Kozma, Zamir, and Zwick [115], using a more
elegant and efficient technique.)

Note that we do not need to explicitly construct the matrices M*) | this will be too expensive.
The bound of Frederickson-Johnson’s algorithm holds as long as each entry of M®*) is accessible
in O(1) time, like in our case.

We use this method to conduct a simultaneous binary search over all d matrices M(¥) to find
dg- At each step of the search we maintain two counters Ly < Hy, for each k. Initially Ly = 1 and
H;, = n®. The invariant that we maintain is that, at each step, &g lies in between the Lj-th and
the Hj-th smallest elements of M(*) | for each k.

Each binary search step is performed as follows. We compute ri, = | (L +Hy)/2], for each k, and
apply the Frederickson-Johnson algorithm to retrieve the r-th smallest element of M*)| which we
denote as dy, in total time O(nd). We give 0y the weight Hy — Lj + 1, and compute the weighted
median Opeq Of {01,...,04}. We run the Ly, Closest Pair Decision procedure of Theorem 5.3.1
on dped. Suppose that it determines that dg < dneq. Then for each k for which 0 = dpmeq We
know that dy < O, so we set Hy := r, and leave L unchanged. Symmetric actions are taken
if 69 > Omed. In either case, we remove roughly one quarter of the candidate differences; that is,
the sum Zke[d] (Hy — Ly + 1) decreases by roughly a factor of 3/4. Hence, after O(logn) steps,
the sum becomes O(d), and a straightforward binary search through the remaining values finds dy.

The overall running time is
O(dnlogn + DP(n,d)(logn + logd)).

Since in our setting d is polynomial in n, and nd « DP(n,d), we obtain that the overall runtime

is O(DP(n,d)logn). This completes the proof of Theorem 5.1.1. O

Randomized Algorithm. Using randomization, we can improve the time bound of the pre-
ceding deterministic algorithm to equal the time bound of computing the dominance product
O(DP(n,d)) in expectation, by using a randomized optimization technique of Chan [52]. Among
the problems for which this technique can be applied, Chan specifically addresses the Closest Pair

problem.

Theorem 5.4.2 (Chan [52]). Let U be a collection of objects. If the Closest Pair Decision problem

can be solved in O(T(n)) time, for an arbitrary distance function d : U x U — R, then the

2Simpler algorithms can select the t-th-smallest element in such cases in O(nlogn) time, which is also sufficient
for our approach.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 80

Closest Pair problem can be solved in O(T(n)) expected time, assuming that T(n)/n is monotone

increasing.

We refer the reader to [52], for the proof of Theorem 5.4.2. By Theorem 5.3.1, Ly, Clo-
sest Pair Decision can be solved in O(DP(n,d)) time. Clearly, DP(n,d)/n is monotone increasing
in n. Hence, by Theorem 5.4.2, we obtain a randomized algorithm for Ly, Closest Pair that runs

in O(DP(n,d)) expected time, as stated in Theorem 5.1.2.

5.5 A Faster Algorithm for L, Closest Pair with Bounded
Integer Coordinates

A considerable part of the algorithm from the previous section is the reduction to computing a
suitable dominance matrix. The algorithms for computing dominance matrices given in Section 5.2
do not make any assumptions on the coordinates of the points, and support real numbers. When
the coordinates are bounded integers, we can improve the algorithms. In particular, for n points in
R™ with small integer coordinates we can solve the optimization problem in O(n*) time, which is a
significant improvement compared to the O(n?%%%%) time bound of our previous algorithm for this
case. As for integer coordinates that are bounded by a constant, the Lo -diameter of the points is
also a constant (bounded by twice the largest coordinate), it follows that one can use the decision

procedure to (naively) guide a binary search over the diameter in constant time. Our improvement

is based on techniques for computing (min, +)-matrix multiplication over integer-valued matrices.

Theorem 5.5.1. Let S be a set of n points py,...,pn in R? such that d = n" for some r > 0, and
for alli € [n], k € [d], pi[k] is an integer in [—M, M]. Then the Ly closest pair can be computed
m

9] (min {Mn‘*’(l’r’l), DP(n,d)}) time.
We first define (max, +)-product and (min, +)-product over matrices.

Definition 5.5.2 (Distance products of matrices). Let A be an n X m matrix and B be an m x n
matrix. The (max, +)-product of A and B, denoted by Ax B, is the n x n matrix C' whose elements
are given by

Cij = max {air + by}, fori,je[n].

Similarly, the (min, +)-product of A and B denoted by A= B is the n x n matrix C’ whose elements
are given by

c;]- = 151277@ {a;x + bkj}7 for 4,5 € [n].

We refer to either of the (min, 4+)-product or the (max, +)-product as a distance product.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 81

The distance product of an n x m matrix by an m x n matrix can be computed naively in
O(n?m) time. When m = n, the problem is equivalent to the APSP (all pairs shortest paths)
problem in a directed graph with real edge weights, and the fastest algorithm known is a recent
one by Chan and Williams [57] that runs in O <n3/2V“(1°g")) time. It is a prominent long-
standing open problem whether a truly subcubic algorithm for this problem exists. However, when
the entries of the matrices are integers, we can convert distance products of matrices into standard

algebraic products. We use a technique by Zwick [159].

Lemma 5.5.3 (Zwick [159]). Given an n x m matriz A = {a;;} and an m x n matric B = {b;;}
such that m = n" for some r > 0, and all the elements of both matrices are integers from [—M, M|,

their (min, +)-product C = A B can be computed in O(Mn*1mD) time.

With minor appropriate modifications, the (max, +)-product of matrices A and B can be
computed within the same time as in Lemma 5.5.3.
We now give an algorithm for computing all-pairs Ly distances, by using the fast algorithm

for computing (max, +)-product over bounded integers.

Lemma 5.5.4. Let S be a set of n points py,...,pn in RY, such that d = n" for some r > 0, and
for all i € [n], k € [d], the coordinate p;[k] is an integer from the interval [—M, M]. Then the

Lo,-distances between all pairs of points (p;, p;) from S can be computed in 5(Mn“’(1’“1)) time.

Proof. We create the n x d matrix A = {a;x} and the d x n matrix B = (—A)T = {by;}, where

Aip = pi[k]7 for i e [n]v ke [d]a

bri = —pi[k], for i€ [n], k€ [d].

Now we compute the (max, +)-product C' = A x B. The matrix L of all-pairs Lq-distances is

then easily seen to be

L[i, j] = max{C[i,], C[5,il} = Ipi = pjl »

for every pair i,j € [n].
Clearly, the runtime is determined by computing the (max,+)-product C' = A = B. This is

done as explained earlier, and achieves the asserted running time. O

Consequently, by taking the minimum time bound from the algorithm above, and the (deter-
ministic) algorithm from Section 5.3, we obtain that for points in R? with integer coordinates from
[—M, M], where d = n" for some r > 0, we can solve the Ly, Closest Pair in the time stated in
Theorem 5.1.3,

0 <min {Mn‘”(l’r’l), DP(n, d)}) .

Chapter 6

Diameter Spanners

82

CHAPTER 6. DIAMETER SPANNERS 83

6.1 Background

In the area of graph sparsification, the notion of a spanner (also known as distance spanner) refers
to a subgraph that approximately preserves all the pairwise distances between the vertices of the
original graph. Formally, given an undirected (possibly weighted) graph G = (V, E), the subgraph
H = (V,Eg € F) is a t-spanner of G iff for every pair of vertices u,v € V, dg(u,v) < t-dg(u,v),
where dg (u,v) and dg(u,v) are the distances between v and v in H and G, respectively ('distance’
means the length of the shortest path). The parameter ¢ is referred to as the stretch factor of H.
Given an undirected graph G and a stretch factor ¢, a “good t-spanner” of G refers to a t-spanner
that has a significantly smaller (by a polynomial factor) set of edges than G has (i.e., significantly
sparser than G).

Spanners were first introduced and studied in the 80s [22,133,134]. Althofer et al. [15] showed
that any undirected weighted graph with n vertices has a (2k —1)-spanner of with O(n1+1/k) edges,
for any integer k£ > 0. Assuming a widely-believed girth conjecture of Erdés [84], this stretch-size
trade-off is essentially optimal.

Besides being theoretically interesting, “good spanners” are known to have numerous applica-
tions in different areas of computer science, such as distributed systems, communication networks
and efficient routing schemes [16,69,70,96,97,135,141,147], motion planning [68,73], approximating
shortest paths [66,67,79], and distance oracles [30,148].

For directed graphs, the notion of spanners is far less understood. This is because we cannot
have sparse spanners for general directed graphs. Even when the underlying graph is strongly-
connected, there exists graphs with €(n?) edges such that excluding even a single edge from the
graph results in a spanner with a stretch as high as the diameter of G, i.e., as max, yev da(u,v) (if
the graph is not fully connected then the diameter is c0). In such a scenario, for directed graphs,
a natural direction to study is the construction of sparse subgraphs that approximately preserves

the graph diameter. This property is captured by the notion of a t-diameter spanner.

Diameter Spanner: Given a directed graph G = (V, FE) and a stretch factor ¢ > 0, a subgraph
H = (V,Ey € E) is defined to be a t-diameter spanner iff diam(H) < [¢-diam(G)], where diam (H)
and diam(G) denote the diameter of H and G, respectively.

For ¢t = 2 it is easy to construct such H with O(n) edges, for the unweighted case, by computing
the union of two BFS trees from some vertex v of the graph, one BFS tree is computed by taking
only the outgoing edges from the nodes it reaches, and the other BFS tree is computed by taking
only the ingoing edges. If G has edge-weights from the interval [1, W], we can replace every BFS
computation with Dijkstra’s algorithm to compute ‘forward’ and ‘backward’ shortest-path trees
from v. It is an easy exercise to show that this construction results in a 2-diameter spanner. This

brings us to the following central question.

Question. Given a directed graph G = (V, E), and a stretch factor ¢ < 2, can we construct a

CHAPTER 6. DIAMETER SPANNERS 84

t-diameter spanner H = (V,Eyg < E)? If so, how small can we make |Eg|? and what is the

trade-off between ¢ and |Eg|?

In this chapter we tackle the question above, by showing several constructions of ¢t-diameter
spanners for various ¢t < 2. We believe that extremal-distance spanners are interesting mathema-
tical objects in their own right. Nevertheless, such a sparsification of graphs suffices for many of
the original applications of the well-studied standard graph spanners, such as in communication
networks, facility location problem, routing, etc. In particular, diameter spanners with a sparse

set of edges are good candidates for backbone networks [96].

6.2 Our Results and Related Works

The girth conjecture of Erdés [84] implies that there are undirected graphs on n vertices, for

1+1/k) edges. This conjecture has been proved for

which any (2k — 1)-spanner will require Q(n
k =1,2,3,5 [154], and is widely believed to be true for any integer k. Thus, assuming the girth
conjecture, one cannot expect better size-stretch trade-offs.

Althofer et al. [15] were the first to show that any undirected weighted graph with n vertices
has a (2k — 1)-spanner of size O(n'*/*). The lower bound mentioned above implies that the
O(n*+1/*) size-bound of this spanner is essentially optimal. Althofer et al. gave an algorithm to
compute such a spanner, and subsequently, a long line of works have studied the question of how
fast can we compute such a spanner, until Baswana and Sen [29] gave a linear-time algorithm.

A c-additive spanner of an undirected unweighted graph G is a subgraph H that preserves
distances up to an additive constant c¢. That is, for any pair of nodes u,v in G it holds that
dp(v,u) < dg(v,u) + c. This type of spanners were also extensively studied [14,28,62,82]. For
example, Baswana, Kavitha, Mehlhorn, and Pettie [28] showed how to construct a 6-additive
spanner of size O(n*?3). It was only recently that Abboud and Bodwin [1] proved that the 4/3
constant in the exponent of the O(n*?)-size bound is tight, for any additive constant c.

Since for directed graphs distance spanners are impossible, the roundtrip distance metric was
proposed. The roundtrip-distance between two vertices v and v is the distance from v to w plus
the distance from u to v. Roditty, Thorup, and Zwick [141] presented the notion of roundtrip
spanners for directed graphs. A roundtrip spanner of a directed graph G is a sparse subgraph H
that approximately preserves the roundtrip distance between every pair of nodes v and wu.

The question of finding the sparsest spanner of a given graph was shown to be NP-Hard by
Peleg and Schéffer [133], in the same work that the graph spanner notion was introduced.

Diameter spanners were mentioned by Elkin and Peleg [80,81], but in the context of approx-
imation algorithms for finding the sparsest diameter spanner (a problem known to be NP-Hard).
To the best of our knowledge, our work is the first to focus on the exzistence of various sparse (i.e.,

with « n? edges) diameter spanners, for directed graphs.

CHAPTER 6. DIAMETER SPANNERS 85

Our Results

Theorem 6.2.1. Given an unweighted directed graph G = (V, E) with n vertices, there exists a
(3/2)-diameter spanner H = (V, Ey € E) with at most O(n®?y/logn) edges. If G is edge-weighted
from the interval [1,W] , then H satisfies diam(H) < [(3/2) diam(G)| + W. Such a subgraph H
can be computed in expected 5(m\/ﬁ) time with high probability.

In Section 6.4.1 we construct an undirected unweighted graph with ©(n?) edges, such that
even removing a single edge will increase the diameter by the factor 3/2. Thus, in general, the
(3/2)-factor cannot be improved (even for undirected graphs). However, this example uses a graph
with diameter 2. Nevertheless, in [65] we show that the size-stretch trade-off from Theorem 6.2.1
is tight (up to polylogarithmic factors) even for directed unweighted graphs with diameter that is
polynomial in n.

For directed graphs with diameter o(1/n/logn), we give a construction of a (5/3)-diameter

spanner of size smaller than that in Theorem 6.2.1, as given in the following theorem.

Theorem 6.2.2. Given an unweighted directed graph G = (V, E) with n vertices and diameter D,
There exists a (5/3)-diameter spanner H = (V, Ey < E) with at most O (Dl/3n4/3 log®/® n) edges.
If G is edge-weighted from the interval [1, W], then H satisfies diam(H) < [(5/3)D] + W. Such a
subgraph H can be computed in expected O(mn/3(DY3 + (n/D)Y?3)) time with high probability. *

In [65] we show an (n4/ 3pl/ 3) lower bound for the number of edges of a diameter spanner
H = (V,Eg € E) such that diam(H) < |5/3]D — 1, for directed unweighted graphs, even with
diameter that is polynomial in n.

Additionally, we give a generalized diameter spanner construction, which can be used to obtain
either a diameter spanner with arbitrarily low stretch or a diameter spanner with arbitrarily small

size, as described in the following theorem.

Theorem 6.2.3. Given an unweighted directed graph G = (V, E) with n vertices, for any 6, €
[0,1], we can compute a subgraph H = (V, Eg € E) satisfying one of the following. Either

€

1. H is a (1 + 0)-diameter spanner of size O(n*~=log' ~°n), or

2. H is a (2 — §)-diameter spanner of size O(n'*<log® n).

If G is edge-weighted, with weights taken from the interval [1,W], then the stretch of H will
increase by an additive W term, in addition to the multiplicative stretch factor t, i.e., diam(H) <
[(1+6)diam(G)] + W or diam(H) < [(2—) diam(G)|+ W. Such a subgraph H can be computed
in expected 9] (m(nE + n“s)) time with high probability.

Note that in Theorem 6.2.3 we require only one of the properties (1) or (2), we do not require

both properties. As will be clear from the proof of Theorem 6.2.3, prior of having the input graph

1 Although D appears in the bound on the computation time of H, we do not assume apriori knowledge of D.

CHAPTER 6. DIAMETER SPANNERS 86

G, we have no knowledge of, and no control over which of the two above properties will be the
one that is satisfied by H. A particular interesting corollary of Theorem 6.2.3 arises if we set
§ = & = 1/3. Then we can compute either a (4/3)-diameter spanner with O(n*3) edges, or a
(5/3)-diameter spanner with O(n*/3) edges.

In [65] we also study other types of extremal-distance spanners, such as eccentricity spanners
and radius spanners. Given a graph G = (V, E'), the eccentricity of a vertex v € V' is the maximum
distance from v to any other vertex in the graph; formally, the eccentricity of v is ecc(v) =
maxyuey dg(v,w). The radius of G is the minimum eccentricity of a vertex in the graph; formally,
the radius of G is min,ey ecc(v). (Note that the diameter of G is max,ey ecc(v).) An eccentricity
spanner is a subgraph of G that approximately preserves all the eccentricities in G. Similarly, a
radius spanner is a subgraph of G that approximately preserves the radius of G. Additionally, we
show in [65] how to maintain extremal-distance spanners in dynamic settings. We do not include

these results in this thesis and refer the reader to [65] for further details.

6.3 Preliminaries and Techniques

Given a directed graph G = (V, E), let u,v € V and S € V. We use the following notations.

e dg(u,v): the length of the shortest path from vertex u to vertex v in graph G. We sometimes

denote it by d(u,v), when the context is clear.

e 7w (u,v): the shortest path from vertex u to vertex v in graph G. (We assume that the
vertices are indexed from 1 to n. We break ties by always preferring the vertex with the

smaller index as the next vertex in the path, starting from u and ending in v.)
e diam(G): the diameter of graph G, that is, max, sev da(p;).

e OUT-BFS(u): an outgoing breadth-first-search (BFS) tree rooted at vertex u, computed by

taking only outgoing edges.

e IN-BFS(u): an incoming breadth-first-search (BFS) tree rooted at u, computed by taking only

incoming edges (can be computed by applying OUT-BFS(u) on G with the edges reversed).

e OUT-BFS(u,d): the tree obtained from OUT-BFS(u) by truncating it at depth d (i.e., contai-

ning only the vertices at the first d levels).
e IN-BFS(u,d): the tree obtained from IN-BFS(u) by truncating it at depth d.

e OUT-BFS(S) (resp., IN-BFS(S)): the tree obtained from OUT-BFs(S) (resp., IN-BFs(S)), when
the set S € V is a super-node, i.e., the vertices of S are treated as one node, thus they are
all at the first level of OUT-BFS(S) (resp., IN-BFS(S)) (this can be computed by adding

a dummy vertex r and adding edges from (resp., to) r to (resp., from) all vertices of S,

CHAPTER 6. DIAMETER SPANNERS 87

compute OUT-BFS(r) (resp., IN-BFS(S)), and delete the vertex r (and its edges) from the

resulting tree).

e da(S,v) (rep., dg(v,S)): the length of the shortest path from (resp., to) the set S to (resp.,
from) vertex v in G, when the set S € V is a super-node, i.e., the vertices of S are treated

as one node.
o N2%(u): the s closest vertices of u in OUT-BFS(u), where ties are broken arbitrarily.
e Nin(u): the s closest vertices of u in IN-BFS(u), where ties are broken arbitrarily.
e DEPTH(T): the depth of tree T
o P(V): the power-set of V.

In our results, we use an extension of the techniques of Aingworth et al. [14] and of Roditty and
Williams [142]. Both, in their diameter approximation algorithms, first find a hitting-set S €V of
size O ((nlogn)/s) that hits No“(u) and N (u) (i.e., S n N (u) # & and S n Ni"(u) # &),
for every u € V. We can find such a hitting set deterministically in O(sn) time, using a greedy
approach (for example, using the algorithm in [14]). There is also an easy Monte Carlo algorithm
that runs in O(n) time (independent of s) that finds such a hitting-set with high probability (at
least 1 — #, for some constant ¢ > 0). This algorithm just samples a subset S = V of size
O ((nlogn)/s) uniformly at random, see Lemma 6.3.1 below. The advantage of the Monte Carlo
algorithm is that we do not have to know or compute the sets N2%(u) and N:"(u) over u € V in
advance. This was a crucial idea of Roditty and Williams [142] in improving the runtime (albeit
randomized) of the diameter approximation algorithm of Aingworth et al. [14].

Inspired by recent works of Cairo, Grossi and Rizzi [49] and Backurs et al. [24], we use an
extension of the technique of Roditty and Williams [142]. Instead of finding a hitting-set we find
a dominating set-pair, defined below.

First, we need the following folklore hitting-set lemma.

Lemma 6.3.1. Let Sy,...,S, €V ={1,...,n}, such that |S;| = L, for each i€ [n]. Let ¢ >0 be
a constant, and put r = (n(c+1)/L)Inn. Let S €V be a random subset of size r (that is, sample
r elements without replacement). Then S is a hitting-set for Si,...,S, with probability at least

1—n—¢c.

Proof. The probability for S to miss a particular set S;, for some i € [n], is at most

IL[n-L-(j-1) <(1-L/n)" <n~'-c

=61

where the j-th factor in the product is the probability that the j-th element added to .S misses S;.

From the union bound we have that the probability for S to miss at least one of the sets Sy,..., S,

CHAPTER 6. DIAMETER SPANNERS 88

is at most n=¢. O

The following lemma is an immediate corollary of Lemma 6.3.1.

Lemma 6.3.2. Let G = (V, E) be an n-vertex directed graph. Let nq,no be integers satisfying
ning = ynlogn, for some constant v > 1. Let S < V be a random subset of size ny. Then,
with high probability (that increases with ~), S has non-empty intersections with N"(v) and with
N2t (v), for eachve V.

We introduce the notion of {(hy, hs)-dominating set-pair, which is a generalization of the stan-

dard definition of h-dominating set [106,107].

Definition 6.3.3 (Dominating set-pair). For a directed graph G = (V, E), and a set-pair (S1, S2) €
P(V) x P(V), we say that (S7,S52) is (h1, ha)-dominating of size-bound {ny,ns), if |S1| = O(nq),
|S2| = O(n2), and one of the following conditions holds. Either

1. For each z € V, dg(S1,2) < hy, or
2. For each z € V, dg(x, S2) < ha.

S1 is said to be hi-out-dominating if it satisfies condition 1, and Ss is said to be ho-in-dominating

if it satisfies condition 2.
We show that a dominating set-pair can be efficiently computed in directed graphs.

Lemma 6.3.4. Let G = (V, E) be a directed unweighted graph G, such that |V| =n and |E| = m.
Let 6 € [0,1], and ny,ne be integers satisfying niny = ynlogn, for some constant v > 1. We can
compute, in time O(m) with high probability, a {|0D],[(1 — §)D])-dominating set-pair (S1,S2) €
P(V) x P(V) such that |S1] < n1, Sa < na.

Proof. Let S; € V be a uniformly random subset of V' of size ny. Let w € V be a vertex of the
maximum depth in OUT-BFS(S;) (ties are broken arbitrarily), i.e., w is the furthest vertex from Sj.
Set Sy := N};Z(w), which is computable in O(m) time. By Lemma 6.3.2, with high probability, the
set N:g(w) contains a vertex of S7. If not, then we re-sample S; and compute w and S5 again. The
number of times we do re-sampling is O(1) with high probability, thus the runtime of computing
(51, S2) is O(m) with high probability.

Now, if the depth of oUT-BFS(S1) is bounded by 0D, then Sy is |dD]-out-dominating, since
for each z € V, dg(S1,2) < [0D]. Suppose Sy is not |§D[-out-dominating, then in particular
de(S1,w) > 0D (since w is the furthest vertex from Si), and thus IN-BFS(w, d D) must have empty
intersection with S;. This is possible only when the vertices of IN-BFS(w, dD) are fully contained
in Ni(w), since otherwise it must be that N.:(w) is fully contained in the set of vertices of
IN-BFS(w, D), but this contradicts the fact that N/ (w) = Sy intersects with Si. Thus, for each
x €V, dg(x,S2) is bounded by DEPTH(IN-BFS(S2)) < [DEPTH(IN-BFS(w)) —0D] < [D — 0D] =
[(1—6)D].

CHAPTER 6. DIAMETER SPANNERS 89
6.4 Construction of Diameter Spanners

Let G = (V, E) be a directed graph with n vertices, m edges, and diameter D. From now on, we
assume that the graph G is strongly connected (and thus m > n), as otherwise its diameter is oo,
for which finding a t-diameter-spanner is not interesting.

For simplicity, in the following subsections we assume that G is unweighted, but our constructi-
ons support positive (at least 1) edge-weights. If G has edge-weights from the interval [1, W], we
replace every application of BFS in the proof of Lemma 6.3.4 and in the procedures below with
Dijkstra’s algorithm to compute a shortest-paths tree. In this case, the stretch of the spanner will
only increase by an additive W term (due to the rounding function used in the algorithms), and
the running time will increase by a logn factor. The proofs are analogous to the proofs of the
unweighted case.

In the following subsections, we provide several constructions of diameter spanners for G with

various size-stretch trade-offs.

6.4.1 (3/2)-Diameter Spanner

A construction of a (3/2)-diameter-spanner can be quite easily obtained using a similar technique
to the one used in the (3/2)-approximation algorithm for graph diameter by Roditty and Wil-
liams [142]. As a warm-up for our next diameter spanner constructions, we give here another
construction for a (3/2)-diameter spanner, using the dominating set-pair definition (given above)
and Lemma 6.3.4.

Let (S1,52) € P(V) x P(V) be a {|3D],[4D])-dominating set-pair obtained by Lemma 6.3.4
by setting § = 1/2 and n; = ny = 4/cnlogn, for some constant ¢ > 0.

We set H to be the union of the trees IN-BFS(s) and OUT-BFS(s), over all s € S U Sy. Formally,

H:= | (-Brs(s) U OUT-BFS(s)).
s€8,USs

We claim the H is a (3/2)-diameter spanner. To see this, consider two distinct vertices z,y €
V. If Sy is |D/2]-out-dominating, then there exists s € S; such that dg(s,y) < D/2. Since
dp(z,s) = dg(z,s) < D, and du(s,y) = dg(s,y) < D/2, we have dy(x,y) < 3D/2. Similarly, if
Sy is [D/2]-in-dominating, then we have dg(z,y) < [3D/2]. Thus, the diameter of H is at most
[3D/2].

H is constructed by computing |S; U Sa| = O(+/nlogn) BFS trees, each of size O(n). Thus,
H contains O(n*/?y/logn) edges. The runtime for computing H is derived from |S; U So| BFS
computations, plus the runtime for finding the dominating set-pair (S7, S2), which by Lemma 6.3.4
is O(m) with high probability. Thus in total, the runtime for computing H is O(m|S; u Sa|) =
O(m+/nlogn) with high probability. This completes the proof of Theorem 6.2.1. O

CHAPTER 6. DIAMETER SPANNERS 90

Algorithm 1: (5/3)-Diameter Spanner Construction

Input: G = (V, E);

- H = (V. J);

. (A1, A2) < {|2D/3|,[D/3])-dominating-set-pair of size-bound {alogn,n/a);

. (B1, B2) < (|D/3],[2D/3])-dominating-set-pair of size-bound {n/a, alogn);

. Add to H the edges of IN-BFs(As) and oUT-BFS(By);

. foreach s € A; U By do add to H the edges of IN-BFS(s) U OUT-BFS(s);

. foreach (u,v) € Ay x B; do add the edges of the shortest path g (u,v) to H;
. return H,;

N OOt W

In general, the (3/2)-stretch factor cannot be improved (even for undirected graphs), as we can
construct the following undirected graph G = (V| E). Let A = {a1,...,a,}, B = {b1,...,b,},C =
{e1,...,¢cn} be sets of distinet vertices such that V= A u B u C. Let each of the sets A, B,C
be an n-clique (i.e., in each set there is an edge between every pair of vertices). Connect an edge
between a; and b;, for each i € [n]. Finally, connect an edge between b; and ¢;, for each ¢, j € [n]
(i.e., a bi-clique between B and C). Clearly, the number of edges of this graph is ©(n?) and its
diameter is 2 (the longest path is from a vertex in A to a vertex in C'). Now, if we remove an edge
(bi,c;), for any 4, j € [n], the diameter increases to 3 due to the shortest-path from a; to ¢;.

Note that the graph above has diameter 2. Nevertheless, as mentioned earlier, in [65] we show
that the size-stretch trade-off from Theorem 6.2.1 is tight (up to polylogarithmic factors) even for

directed unweighted graphs with diameter that is polynomial in n.

6.4.2 (5/3)-Diameter Spanner

Here we present a construction of a (5/3)-diameter spanner H that is sparser than the (3/2)-
diameter spanner from Theorem 6.2.1 whenever D = O(W). This will prove Theorem 6.2.2.
Let @ > 0 be a parameter that we will fix later. The construction of H is presented in
Algorithm 1. We will now prove its correctness.
Consider two distinct vertices z,y € V. If A; is a |2D/3]-out-dominating set, then dg(s,y) <
|2D/3] for some s € A;. Thus

di(z,y) < dg(z,s) +du(s,y) = dg(z,s) + da(s,y) < D+ |2D/3| = |5D/3].

Similarly, if Bs is a [2D/3]-in-dominating set, it can be shown that dy(z,y) < [5D/3].

Suppose that neither A is [2D/3]-out-dominating nor By is [2D/3]-in-dominating. Then, A
is [D/3]-in-dominating and B is | D/3]-out-dominating (by definition of dominating set-pair). So
dg(z,As),de(B1,y) < [D/3]. Since H contains IN-BFS(Az2) and OUT-BFS(B;), there must be
sy € Ay and s, € By such that dy(z,s;) = da(x,s:) = dg(x,A2) < [D/3] and du(sy,y) =
da(sy,y) = da(B1,y) < [D/3]. Since H contains the shortest path between each pair of vertices

CHAPTER 6. DIAMETER SPANNERS 91

in Ay x By, we obtain that dy (s, sy) = dg(Ss, sy) < D. Therefore,
dH(vay) < dH(ma Sm) + dH<ST7 Sy) + dH(syvy) = dG(.CE, 51) + dG(Srv Sy) + dG(Syvy) < {5D/3]

We now analyze the size of H. We added to H the edges of the O(alogn) BFS trees from
Steps 5 and 4, which consist of O(nalogn) edges in total. In Step 6 we added the shortest paths
between all pairs in Ay x Bj, which use in total O(n?D/a?) edges. Thus, the total number of
edges in H is O(nalogn + n?D/a?). This is minimized when o = ©((nD/logn)/3). Therefore,
the total number of edges in H is O(D3n*31og®® n).

Observe that in order to compute a up to a suitable constant factor, it suffices to have an
estimate of D. We can easily compute a 2-approximation for the diameter D in O(m) time, since
for any arbitrary vertex w € V, D < DEPTH(IN-BFS(w)) + DEPTH(OUT-BFS(w)) < 2D, and the
depths of IN-BFS(w) and OUT-BFS(w) are computable in O(m) time.

We now analyze the running time of each step in Algorithm 1. By Lemma 6.3.4, the time to com-
pute the set-pairs (A;, As) and (By, By) from Steps 2 and 3 is O(m) with high probability. Step 4
takes O(m) time. Step 5 and 6 are done by computing IN-BFS(s) and OUT-BFS(s), for each vertex
s € Aj U By U Ay U By. Thus, Steps 5 and 6 takes O (m - |A; U By U As U By|) time. Overall, the
total expected runtime of the algorithm is O (m(]4; U A3 U By U Bg|)) = O (m(alogn + n/a)) =
O (mn'/3DV3 + mn?3/DV3) = O (mn'/3(D'/3 + (n/D)"?3)). This completes the proof of Theo-
rem 6.2.2. O

As mentioned earlier, in [65] we show an Q (n*/3D1/3) lower bound for the size of a diameter
spanner H = (V, Eyg € F) that satisfies diam(H) < |5/3|D — 1, for directed unweighted graphs

(even for such graphs with a diameter that is polynomial in n).

6.4.3 General (low-stretch or small-size)-Diameter Spanner

Here we generalize the result from Theorem 6.2.1. For any d,¢ € [0,1], we can compute in
O (m(n® + n'*)) time with high probability, a subgraph H = (V,Ep < E) satisfying one of
the following. Either

€

1. His a (1 + 6)-diameter spanner of size O(n?>~¢log' ™ n), or

2. H is a (2 — §)-diameter spanner of size O(n'"¢log® n).

Let 0, € [0,1], and use Lemma 6.3.4 to obtain a {|§D|, [(1—0) D])-dominating set-pair (S, S2),
such that |S1] < (nlogn)!~¢, and |Ss| < y(nlogn)®, for some constant v > 1. (Note that indeed
(nlogn)!=¢(nlogn)® = ynlogn.)

Let H; (resp., Hs) be the union of the trees IN-BFS(s) and OUT-BFS(s), for each s € Sy (resp.,
s € S3). The time for computing H; and Hs is derived from |S; u S3| BFS computations, plus

the time for finding the dominating set-pair (57, S2), which is in total O(m(ny + ne)) time with

CHAPTER 6. DIAMETER SPANNERS 92

high probability, where the constant of proportionality depends on . Note that H; contains
O(n?~¢log'~°n) edges, and Hy contains O(n'** log® n) edges.

Consider any two distinct vertices z,y € V. If Sj is |§D]-out-dominating, then there exists
s1 € Sy such that dg(s1,y) < |0D]. Since dp, (x, $1) = dg(z,s1) < D, and dg, (s1,y) = da(s1,y) <
|0D], we have dg, (z,y) < |[(1 + 0)D]. Similarly, if Sz is [(1 — ¢)D]-in-dominating, then there
exists s € Sy such that dg(z,s2) < [(1 — 0)D]. Since dy,(x,s2) = da(z,s2) < [(1 — §)D]
and dp,(s2,y) = dg(s2,y) < D, we have dpy,(z,y) < [(2 — §)D]. This completes the proof of
Theorem 6.2.3. O

Chapter 7

Conclusions and Open Questions

93

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 94

The main results of this thesis are

1. Improved decision tree for k-SUM and improved algorithm for 3SUM. Following our work, our
decision tree was significantly improved by Kane, Lovett, and Moran [114], and our 3SUM

algorithm was improved by Chan [55] by an additional logn factor.

2. The first subquadratic algorithms for computing Dynamic Time Warping (DTW) and Ge-
ometric Edit Distance (GED) between two point-sequences in R (and also in R%, for any
constant d, when the underlying metric is polyhedral), breaking the nearly 50 years old qua-
dratic time barrier of these problems. These are currently the best-known algorithms for

these problems.

3. Linear decision trees with near-linear depth for Discrete Fréchet Distance under polyhedral

metrics in R?, for any constant d.

4. The first strongly-polynomial strongly subcubic algorithm for computing Lo, Closest Pair for

n points in R™, and showing the relation of this problem to computing dominance product.

5. Showing the existence of various sparse diameter spanners with stretch smaller than 2 for

directed graphs, and giving efficient algorithms to construct them.

We conclude this thesis with several open problems, which may be interesting for future work.

7.1 Bringing the Four Russians to Geometry: Can we test
general position in subquadratic time?

In light of the recent 3SUM results stated in Chapter 3, the results of Kane, Lovett and Moran [114],
and of Chan [55], it is natural to ask whether similar improvements can be made for some well
studied 3SUM-Hard problems. Perhaps the most famous one is the 3-Collinearity Testing problem
(3-Collinearity) (also known as general position testing). That is, determining whether there are
three collinear points in a set of n points in the plane. Chan [55] recently showed subquadratic
algorithms for some 3SUM-Hard problems, however, not for 3-Collinearity.

In our algorithms from the results described in Chapters 3 and 4, we start by using the so-called
“Method of the Four Russians” [20], described in Section 2.2. This method can be exploited to
improve algorithms that involve a matrix structure. The basic idea is to decompose an n x n
matrix into (n/g)? small sub-matrices (boxes), each of size g x g. Then the hard challenge is to
find a way to efficiently solve a corresponding sub-problem in each of these boxes, and obtain the
solution for the original problem by combining the answers from the sub-problems, maintaining an

overall improved runtime. A natural questions is:

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 95

Can we extend this technique for problems that do not involve a matrix structure, such as

various geometric 3SUM-Hard problems in the plane?

Assuming that the input consists of n curves in the plane, our idea is to construct a g-cutting
that decomposes R? into (n/g)? disjoint cells, so that each cell is intersected by at most g of the
input curves. This decomposes the original problem into (n/g)? smaller subproblems, each of size at
most g. This is analogous to decomposing a matrix into small boxes in the standard Four Russians
method. Then, if we can solve each subproblem in o(g?) time, we can solve all the subproblems
in subquadratic time. The challenge left is to solve the original problem in subquadratic time, by
using the solutions of the aforementioned subproblems.

3-Collinearity is a particularly interesting problem to tackle, as it is one of the more famous

3SUM-Hard problems, and can be solved in O(n?) time. We recall the problem:
3-Collinearity: Given a set S of n points in R?, decide whether S contains three collinear points.
Often this problem is stated in the following equivalent dual form.

3-Collinearity (dual): Given a set L of n lines in R?, decide whether L contains three concur-

rent lines (i.e., three lines that intersect at a common point).

Towards a subquadratic algorithm for 3-Collinearity. We look at the dual problem. Let L
denote the set of lines dual to the n input points. We fix some small parameter g, and construct
a g-cutting of the plane for L in O(ng) time, using the standard techniques of Chazelle and Fried-
man [59] and Chazelle [58]. Specifically, we partition the plane into O(n/g)? triangles, where each
triangle is intersected by at most g lines of L. Ignoring concurrencies at points on the boundaries
of the triangles of the cutting (which are much easier to detect), each possible concurrency occurs
inside one of these triangles, and therefore this cutting technique gives a partition of the original
problem into small subproblems.

Any tuple of g lines in the plane can be represented by a point in R29. We thus get a collection
of O(n/g)? points in R?9, one for each triangle of the cutting, and our goal is to determine whether
one of these points represents a g-tuple with three concurrent lines. Each such concurrency can
be expressed by a quadratic polynomial equation in the coefficients of the three relevant lines. We
thus get a collection F of (g) quadratic surfaces in R?9, and the goal is to determine whether
any of the O(n/g)? points lie on one of these surfaces. In other words, our goal is to construct
a point location data structure such that a query to this data structure (by a point in R29) will
confirm/negate whether there are three lines among the g lines that intersect at a common point.

The data structure is for point location in the arrangement of the O(g®) surfaces in R?9 men-
tioned above, whose complexity is easily seen to be bounded by O(229¢%9). Now we wish to query

this data structure O(n/g)? times, one query for each cell of the cutting. However, in order to

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 96

obtain an overall subquadratic runtime, each query should take o(g?) time, which appears to be a
rather serious bottleneck.

The best known query time for point location among hyperplanes in R? is given in a recent
algorithm of Ezra, Har-Peled, Kaplan, and Sharir [86], where a query takes O(d® logn) time, which
improves an algorithm of Meiser [130] with O(d® logn) query time. If we restrict ourselves to the
linear decision tree model, a recent work of Ezra and Sharir [88] gives an (unconstrained) linear
decision tree with depth O(n? log? n), for point location among n hyperplanes in R%. In our case
we have quadratic surfaces rather than hyperplanes, but even if the state-of-the-art techniques
mentioned above could be adapted to this case, the query cost for d = 2g and n = O(g?) would
be O(g®logg) in the uniform model, way too much for our needs. Even in the linear decision tree
model it would be too expensive, as we obtain a bound of O(g?logg).

Nevertheless, in our case, since we can take g to be a very small quantity, we can afford to
use a data structure with a huge amount of preprocessing time and storage, much more than the
standard approaches. So our problem now is to construct a point location data structure for these
surfaces, possibly with a very large storage and preprocessing time (even super-exponential in g),

as long as the query time for a point (representing a set of g lines) is only o(g?).

7.2 Sorting X +Y

Recall the Sorting X + Y problem discussed in Section 2.2 and in Chapter 3.

Sorting X + Y: Given two sets X and Y, each of n real numbers, sort

X+Y={z+y|lzeX, yeY}.

A somewhat simpler variant of this problem is

Element Uniqueness in X + Y: Given two sets X and Y, each of n real numbers, determine

whether all the elements of X + Y are distinct.

Both problems are known to be 3SUM-Hard, and are also used for basing conditional lower
bounds for other problems (see [27] and [108]), which are therefore classified as “(Sorting X +
Y)-Hard”. As mentioned in Section 2.2, the linear decision tree complexity of Sorting X + Y
(and Element Uniqueness in X + Y) was shown to be O(n?) by Fredman [92] in 1976, and in
a recent breakthrough by Kane, Lovett, and Moran [114] this complexity was shown to be only
O(n log? n). It is still a prominent long-standing open problem whether these problems can be

solved in o(n?logn) time (see [72]), even for the case X =Y.

Our 3SUM algorithm and Sorting X + Y. In our 3SUM algorithm we showed that we

can obtain the sorting permutations of boxes of size logn x logn, that comprise X + Y, in

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 97

O(n?loglogn/logn) overall time. Is it possible to pay an additional o((logn)?/loglogn) fac-
tor and determine whether all elements in X + Y are distinct? Note that this is a global question:

resolving element uniqueness in each box separately is not enough.

An additive combinatorics direction. Recently, Chan and Lewenstein [56] presented new al-
gorithms for solving certain non-trivial restricted cases of 3SUM on integers in strongly subquadra-
tic time, by using results from additive combinatorics. Specifically, they developed an algorithmic

framework from a version of the Ballog-Szémeredi-Gowers (BSG) theorem [146], which states:

Theorem 7.2.1 (Ballog-Szémeredi-Gowers [146]). Given sets A, B,S, each of size N, in any
Abelian group, and some parameter o > 0, such that |{(a,b) EAxBla+be S}‘ > aN?, there
exist subsets A' € A and B’ € B, satisfying |A’|,|B’| = Q(aN), such that |A’+ B'| = O((1/a)°N).

It may be interesting to investigate whether additive combinatorics techniques can be used for
developing an algorithm for deciding whether the elements of X + X are all distinct, for certain
non-trivial cases of integer inputs. A relevant theorem that might be useful for this purpose is the

following theorem by Brown and Buhler [41], and Roth [143].

Theorem 7.2.2. For every € > 0, there exists ng = ng(e) with the following property. If A is
an Abelian group of odd order and |A| > ng, then every subset B < A with |B| > €|A| contains a

three-term arithmetic progression, i.e., distinct elements x,y, z such that x +y = 2z.
Very recently, Bloom [35] established the following bound.

Theorem 7.2.3 (Bloom [35]). If A < {1,...,N} contains no non-trivial' three-term arithmetic

progressions then
(loglog N)*

A
4] « log N

Connection to the problem. Observe that if A contains a three-term arithmetic progression
(2,9, 2) then not all elements of A + A are distinct, since x + 2 = y + y € A+ A. Can one use
this fact in conjunction with Theorem 7.2.3 to develop a faster algorithm for deciding whether all

elements of A + A are distinct, for certain non-trivial cases of integer inputs?

7.3 Additional Classical Quadratic Problems

In addition to the problems mentioned above, there are some fundamental quadratic problems
for which even a polylogarithmic factor improvements are unknown. Since these problems are
fundamental, it is worth trying to break their quadratic time (and sometimes also space) bounds.

We discuss about two of them below.

LA trivial three-term arithmetic progression is one in which all three elements are the same.

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 98

Deterministic optimal binary search tree. We are given a set X = {a1,...,a,} of n ordered
elements, and we wish to perform binary searches among them. We are given a set {A1,..., A, } U
{By,..., B} of 2n+ 1 probabilities, where A; is the probability that the search is with element a;,
for each i € [n], and B; is the probability that the search is with an element between a; and a;11,
for each i € [n— 1]; By is the probability of searching with an element strictly less than ag, and B,
is the probability of searching with an element strictly greater than a,. These 2n + 1 probabilities
cover all possible searches, and therefore add up to 1.

The well known optimal binary search tree problem is the optimization problem of finding the
binary search tree that minimizes the expected search time. Gilbert and Moore [98] showed in
1959 a dynamic programming algorithm for this problems that runs in O(n?) time. Knuth [121]
showed in 1971 that their algorithm can be speeded up to run in ©(n?) time, and this currently the
best-known time bound for this problem. Knuth’s primary insight was that the optimality problem
is hereditary, in the sense that if a certain tree is optimal for a given probability distribution, then
its left and right subtrees must also be optimal for their (suitably scaled) appropriate subsets of
the distribution.

Although this problem was not proven to be 3SUM-Hard, there is a reason to believe that this
problem is harder than 3SUM, as Knuth’s algorithm also uses ©(n?) space (no optimum binary
search tree algorithm has been found that uses o(n?) space and polynomial time), whereas a
standard quadratic-time algorithm for 3SUM uses only O(n) space.

In view of the recent “quadratic-time breaking algorithms” discussed in this thesis, we propose

two main open questions concerning the optimal binary search tree problem.

1. Can it be solved in polynomial time and o(n?) space? is it possible to break the quadratic

space barrier?

2. Does Knuth’s algorithm runs in optimal time? namely, is it possible to break the quadratic

time barrier?

Minimum area triangle. Given a set P of n points in the plane, the minimum-area triangle
problem is to find a triangle T' of minimum are, whose vertices are in P (i.e., there is no other such
a triangle whose area is smaller than the area of T'). The corresponding decision version of this
problem is to determine whether there exists a triangle of area not larger than a given parameter
K > 0, whose vertices are in P .

Eppstein, Overmars, Rote, and Woeginger [83] presented a geometric algorithm that uses a dy-
namic programming approach and runs in O(n?) time and uses O(n) space, for finding a minimum-
area triangle. Our question is whether the decision version of this problem can be solved in subqua-
dratic time. Note however, that this problem is 3SUM-Hard, moreover, it is “3-Collinearity-Hard”,

since deciding whether there are three collinear points in P can be done by deciding whether there

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 99

is a triangle of area 0, whose vertices are from P. Thus, a subquadratic-time solution for this
problem immediately implies a subquadratic-time solution for 3-Collinearity. Hence, this question
is better be tackled only if one can first solve 3-Collinearity in subquadratic time, which is the

question given in Section 7.1.

Bibliography

[1]

[10]

A. Abboud and G. Bodwin. The 4/3 additive spanner exponent is tight. In Proc. 48th Annu.
ACM Sympos. on Theory of Computing (STOC), pages 351-361, 2016.

A. Abboud and K. Bringmann. Tighter connections between formula-sat and shaving logs. In
45th International Colloquium on Automata, Languages, and Programming (ICALP), pages
8:1-8:18, 2018.

A. Abboud, T. D. Hansen, V. V. Williams, and R. Williams. Simulating branching programs
with edit distance and friends: Or: A polylog shaved is a lower bound made. In Proc. 48th
Annu. ACM Sympos. on Theory of Computing (STOC), pages 375-388, 2016.

A. Abboud and K. Lewi. Exact weight subgraphs and the k-SUM conjecture. In Proc. 40th
Int’l Collog. on Automata, Languages and Programming (ICALP), pages 1-12, 2013.

A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In Proc. 55th Annu. Sympos. on Foundations of Computer Science (FOCS), pages
434-443, 2014.

A. Abboud, V. V. Williams, and H. Yu. Matching triangles and basing hardness on an
extremely popular conjecture. In Proc. 47th Annu. ACM on Sympos. on Theory of Computing
(STOC), pages 41-50, 2015.

P. K. Agarwal, R. Ben Avraham, H. Kaplan, and M. Sharir. Computing the discrete Fréchet
distance in subquadratic time. SIAM J. Comput., 43(2):429-449, 2014.

P. K. Agarwal, K. Fox, J. Pan, and R. Ying. Approximating dynamic time warping and edit
distance for a pair of point sequences. In Proc. 32nd International Sympos. on Computational

Geometry (SoCG), pages 6:1-6:16, 2016.

A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a
matrix-searching algorithm. Algorithmica, 2(1):195-208, 1987.

A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer Algorithms. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1974.

100

BIBLIOGRAPHY 101

[11]

[12]

[13]

[15]

[16]

[18]

[19]

[20]

[21]

22]

[23]

O. Aichholzer, F. Aurenhammer, E. D. Demaine, F. Hurtado, P. Ramos, and J. Urrutia. On
k-convex polygons. Comput. Geom., 45(3):73-87, 2012.

N. Ailon and B. Chazelle. Lower bounds for linear degeneracy testing. J. ACM, 52(2):157—
171, 2005.

N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest

neighbors. SIAM J. Comput., 39(1):302-322, 20009.

D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167—
1181, 1999.

I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete Comput. Geom., 9(1), 1993.

K. Alzoubi, X. Y. Li, Y. Wang, P. J. Wan, and O. Frieder. Geometric spanners for wireless
ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4):408-421,
2003.

A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jumbled indexing.
In Proc. 41st Int’l Colloq. on Automata, Languages, and Programming (ICALP), pages 114~
125, 2014.

A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom. Mind the gap:
Essentially optimal algorithms for online dictionary matching with one gap. In Proc. 27th

Int’l Sympos. on Algorithms and Computation (ISAAC), pages 12:1-12:12, 2016.

A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Commun. ACM, 51(1):117-122, 2008.

V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical construction of the

transitive closure of a directed graph. Dokl. Akad. Nauk., 194(11), 1970.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, 1st edition, 2009.

B. Awerbuch. Communication-time trade-offs in network synchronization. In Proc. 4th Annu.

ACM Sympos. on Principles of Distributed Computing (PODC), pages 272-276. ACM, 1985.

A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). In Proc. 47th Annu. ACM Sympos. on Theory of Computing (STOC),
pages H1-58, 2015.

BIBLIOGRAPHY 102

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Backurs, L. Roditty, G. Segal, V. V. Williams, and N. Wein. Towards tight approximation
bounds for graph diameter and eccentricities. In Proc. 50th Annu. ACM Sympos. on Theory
of Computing (STOC), pages 267-280, 2018.

I. Baran, E. D. Demaine, and M. Patragcu. Subquadratic algorithms for 3SUM. Algorithmica,
50(4):584-596, 2008.

L. Barba, J. Cardinal, J. Tacono, S. Langerman, A. Ooms, and N. Solomon. Subquadratic
Algorithms for Algebraic Generalizations of 3SUM. In Proc. 83rd International Symposium
on Computational Geometry (SoCG), pages 13:1-13:15, 2017.

G. Barequet and S. Har-Peled. Polygon containment and translational min-Hausdorff-
distance between segment sets are 3SUM-hard. Int. J. Comput. Geometry Appl., 11(4):465—
474, 2001.

S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and («, /3)-spanners.
ACM Trans. Algorithms, 7(1):5:1-5:26, 2010.

S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k — 1)-spanner
of O(n'*/*) size in weighted graphs. In Proc. 30th International Conference on Automata,

Languages and Programming (ICALP), pages 384-396, 2003.

S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in expected

O(n?) time. ACM Trans. Algorithms, 2(4):557-577, 2006.

M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM
Sympos. on Theory of Computing (STOC), pages 80-86, 1983.

J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214-229, 1980.

J. L. Bentley and M. I. Shamos. Divide-and-conquer in multidimensional space. In Proc. of

the 8th Annu. ACM Sympos. on Theory of Computing (STOC), pages 220-230, 1976.

P. Bille and M. Farach-Colton. Fast and compact regular expression matching. Theoretical

Computer Science, 409(3):486-496, 2008.

T. F. Bloom. A quantitative improvement for Roth’s theorem on arithmetic progressions.

Journal of the London Mathematical Society, 2016.

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for
selection. J. Comput. Syst. Sci., 7:448-461, 1973.

D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman,
M. Patrascu, and P. Taslakian. Necklaces, convolutions, and X + Y. Algorithmica, 69:294—
314, 2014.

BIBLIOGRAPHY 103

[38]

[39]

(48]

[49]

K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subqua-
dratic algorithms unless SETH fails. In Proc. 55th IEEE Annu. Sympos. on Foundations of
Computer Science (FOCS), pages 661-670, 2014.

K. Bringmann and M. Kiinnemann. Quadratic conditional lower bounds for string problems
and dynamic time warping. In Proc. 56th Annu. IEEE Sympos. on Foundations of Computer
Science (FOCS), pages 79-97, 2015.

K. Bringmann and W. Mulzer. Approximability of the discrete Fréchet distance. J. Comput.
Geom., 7(2):46-76, 2016.

T. C. Brown and J. P. Buhler. A density version of a geometric Ramsey theorem. J.

Combinatorial Theory, Series A, 32(1):20-34, 1982.

K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is it to walk the
dog? Proc. 23rd Euro. Workshop Comput. Geom., pages 170-173, 2007.

K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four soviets walk the dog - with an
application to Alt’s conjecture. pages 1399-1413, 2014.

R. C. Buck. Partition of space. Amer. Math. Monthly, 50:541-544, 1943.

R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in optimization.
Discrete Applied Mathematics, 70(2):95-161, 1996.

R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in optimization.
Discrete Applied Mathematics, 70(2):95 — 161, 1996.

A. Butman, P. Clifford, R. Clifford, M. Jalsenius, N. Lewenstein, B. Porat, E. Porat, and
B. Sach. Pattern matching under polynomial transformation. STAM J. Comput., 42(2):611—
633, 2013.

E. G. Caiani, A. Porta, G. Baselli, M. Turiel, S. Muzzupappa, F. Pieruzzi, C. Crema, A. Mal-
liani, and S. Cerutti. Warped-average template technique to track on a cycle-by-cycle basis
the cardiac filling phases on left ventricular volume. In Computers in Cardiology, pages

73-76, 1998.

M. Cairo, R. Grossi, and R. Rizzi. New bounds for approximating extremal distances in un-
directed graphs. In Proc. 27th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA),
pages 363-376, 2016.

J. Cardinal, J. Tacono, and A. Ooms. Solving k-SUM using few linear queries. In Proc. 24th
Annu. European Sympos. on Algorithms (ESA), pages 25:1-25:17, 2016.

BIBLIOGRAPHY 104

[51]

M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Non-
deterministic extensions of the strong exponential time hypothesis and consequences for

non-reducibility. In Proc. ACM Conference on Innovations in Theoretical Computer Science

(ITCS), pages 261-270, 2016.

T. M. Chan. Geometric applications of a randomized optimization technique. Discrete

Comput. Geom., 22(4):547-567, 1999.

T. M. Chan. All-pairs shortest paths with real weights in O(n3/logn) time. Algorithmica,
50(2):236-243, 2008.

T. M. Chan. Speeding up the four russians algorithm by about one more logarithmic factor.
In Proc. of the 26th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages
212-217, 2015.

T. M. Chan. More logarithmic-factor speedups for 3SUM, (median,+)-convolution, and
some geometric 3SUM-hard problems. In Proc. 29th Annu. ACM-SIAM Sympos. on Discrete
Algorithms (SODA), pages 881-897, 2018.

T. M. Chan and M. Lewenstein. Clustered integer 3SUM via additive combinatorics. In
Proc. 47th Annu. ACM Sympos. on Theory of Computing (STOC), pages 31-40, 2015.

T. M. Chan and R. Williams. Deterministic APSP, orthogonal vectors, and more: Quickly
derandomizing Razborov-Smolensky. In Proc. of the 27th Annu. ACM-SIAM Sympos. on
Discrete Algorithms (SODA), pages 1246-1255, 2016.

B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom., 9(2):145—
158, 1993.

B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in

geometry. Combinatorica, 10(3):229-249, 1990.

B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algo-
rithmica, 1(2):133-162, 1986.

B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1(2):163—
191, 1986.

S. Chechik. New additive spanners. In Proc. 24th Annu. ACM-SIAM Sympos. on Discrete
Algorithms (SODA), pages 498-512, 2013.

S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. E. Tarjan, and V. V. Williams. Better
approximation algorithms for the graph diameter. In Proc. 25th Annu. ACM-SIAM Sympos.
on Discrete Algorithms (SODA), pages 1041-1052, 2014.

BIBLIOGRAPHY 105

[64]

[65]

73]

[74]

[75]

K. Y. Chen, P. H. Hsu, and K. M. Chao. Approximate matching for run-length encoded
strings is 3SUM-Hard. In Proc. 20th Annu. Sympos. Combinatorial Pattern Matching (CPM),
pages 168-179, 2009.

K. Choudhary and O. Gold. Extremal distances in directed graphs: Tight spanners and
near-optimal approximation algorithms. To appear in Proc. of Annu. ACM-SIAM Sympos.
on Discrete Algorithms (SODA), 2020. A preliminary version in arXiv:1812.01602.

E. Cohen. Fast algorithms for constructing ¢-spanners and paths with stretch ¢. SIAM
Journal on Computing, 28(1):210-236, 1998.

E. Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest

paths. J. ACM, 47(1):132-166, 2000.

D. Coleman, I. A. Sucan, M. Moll, K. Okada, and N. Correll. Experience-based planning
with sparse roadmap spanners. In Proc. IEEE International Conference on Robotics and

Automation (ICRA), pages 900-905, 2015.
L. J. Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170-183, 2001.

L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. J. Algo-
rithms, 50(1):7-95, 2004.

A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann. Touch me once and I
know it’s you!: Implicit authentication based on touch screen patterns. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages 987-996, 2012.

E. D. Demaine, J. S. B. Mitchell, and J. O’'Rourke. The open problems project. https:
//cs.smith.edu/~jorourke/TOPP/. Online; accessed 11-August-2019.

A. Dobson and K. E. Bekris. Sparse roadmap spanners for asymptotically near-optimal

motion planning. The International Journal of Robotics Research, 33(1):18-47, 2014.

R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix multiplication and bottleneck
shortest paths. In Proc. of the 20th Annu. ACM-SIAM Sympos. on Discrete Algorithms
(SODA), pages 384-391, 2009.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Pro-
babilistic Models of Proteins and Nucleic Acids. Cambridge University Press, New York,
1998.

H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hy-

perplanes with applications. STAM J. Comput., 15(2):341-363, 1986.

https://cs.smith.edu/~jorourke/TOPP/
https://cs.smith.edu/~jorourke/TOPP/

BIBLIOGRAPHY 106

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[38]

[89)]

[90]

A. Efrat, Q. Fan, and S. Venkatasubramanian. Curve matching, time warping, and light
fields: New algorithms for computing similarity between curves. Journal of Mathematical

Imaging and Vision, 27(3):203-216, 2007.

T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical report, TU Vienna,
Austria, 1994.

M. Elkin. Computing almost shortest paths. In Proc. 20th Annu. ACM Sympos. on Principles
of Distributed Computing (PODC), pages 53-62, 2001.

M. Elkin and D. Peleg. Approximating k-spanner problems for k& > 2. In Proc. 8th Interna-
tional Conference on Integer Programming and Combinatorial Optimization (IPCO), pages

90-104, 2001.

M. Elkin and D. Peleg. The client-server 2-spanner problem with applications to network
design. In Proc. 8th International Colloquium on Structural Information and Communication

Complexity (SIROCCO), pages 117-132, 2001.

M. Elkin and D. Peleg. (1+¢, 8)-spanner constructions for general graphs. STAM J. Comput.,
33(3):608-631, 2004.

D. Eppstein, M. Overmars, G. Rote, and G. Woeginger. Finding minimum area k-gons.
Discrete Comput. Geom., 7(1):45-58, 1992.

P. Erd6s. Extremal problems in graph theory. In Proc. Sympos. on Theory of Graphs and
its Applications (Smolenice, Czechoslovakia), pages 29-36, 1963.

J. Erickson. Lower bounds for linear satisfiability problems. Chicago Journal of Theoretical

Computer Science, 1999(8), 1999.

E. Ezra, S. Har-Peled, H. Kaplan, and M. Sharir. Decomposing arrangements of hyperplanes:
VC-dimension, combinatorial dimension, and point location. CoRR, abs/1712.02913, 2017.

E. Ezra and M. Sharir. A nearly quadratic bound for the decision tree complexity of k-
SUM. In Proc. 83rd International Symposium on Computational Geometry (SoCG), pages
41:1-41:15, 2017.

E. Ezra and M. Sharir. A nearly quadratic bound for point-location in hyperplane arrange-

ments, in the linear decision tree model. Discrete Comput. Geom., 61(4):735-755, 2019.

S. Fortune and J. Hopcroft. A note on Rabin’s nearest-neighbor algorithm. Inform. Process.

Lett., 8(1):20-23, 1979.

M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico

di Palermo, 22:1-74, 1906.

BIBLIOGRAPHY 107

[91]

[92]

[93]

[101]

[102]

[103]

[104]

G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in X +Y
and matrices with sorted columns. J. Comput. Sys. Sci., 24(2):197-208, 1982.

M. L. Fredman. How good is the information theory bound in sorting? Theor. Comput. Sci,

1(4):355-361, 1976.

M. L. Fredman. New bounds on the complexity of the shortest path problem. SIAM .J.
Comput., 5(1):83-89, 1976.

A. Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440-458, 2017.

A. Gajentaan and M. H. Overmars. On a class of O(n?) problems in computational geometry.

Comput. Geom., 5:165-185, 1995.

J. Gao and D. Zhou. The emergence of sparse spanners and greedy well-separated pair
decomposition. In Proc. 12th Scandinavian Sympos. and Workshops on Algorithm Theory
(SWAT), pages 50-61, 2010.

C. Gavoille and C. Sommer. Sparse spanners vs. compact routing. In Proc. 23rd Annu. ACM

Sympos. on Parallelism in Algorithms and Architectures (SPAA), pages 225-234, 2011.

E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell System Technical
Journal, 38(4):933-967, 1959.

0. Gold and M. Sharir. On the complexity of the discrete Fréchet distance under L; and
Ly. In Proc. 31st European Workshop on Computational Geometry (EuroCG), 2015.

O. Gold and M. Sharir. Dominance product and high-dimensional closest pair under L.
In Proc. of the 28th International Sympos. on Algorithms and Computation (ISAAC), pages
39:1-39:12, 2017.

O. Gold and M. Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy. In
Proc. 25th Annu. European Sympos. on Algorithms (ESA), pages 42:1-42:13, 2017. Also in
arXiv:1512.05279, 2015.

O. Gold and M. Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. ACM Trans. Algorithms, 14(4):50:1-50:17, 2018. Also in Proc. 44th
International Colloquium on Automata, Languages, and Programming (ICALP), pages 25:1-
25:14, 2017.

S. Grabowski. New tabulation and sparse dynamic programming based techniques for se-

quence similarity problems. Discrete Applied Mathematics, 212:96-103, 2016.

A. Grgnlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th Annu.

Sympos. on Foundations of Computer Science (FOCS), pages 621-630, 2014.

BIBLIOGRAPHY 108

[105)

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Trans.

Amer. Math. Soc., 117:285-306, 1965.

T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. Chapman

& Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1998.

M. Henning and A. Yeo. Total Domination in Graphs. Springer Monographs in Mathematics.
Springer New York, 2014.

A. Herndndez-Barrera. Finding an o(n?logn) algorithm is sometimes hard. In Proc. Sth

Canadian Conference on Computational Geometry, pages 289-294, 1996.

X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J.

Complexity, 14(2):257-299, 1998.

R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367—
375, 2001.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-

plexity? J. Comput. Syst. Sci., 63(4):512-530, 2001.

P. Indyk, M. Lewenstein, O. Lipsky, and E. Porat. Closest pair problems in very high dimen-
sions. In Proc. 81st International Colloguium on Automata, Languages and Programming

(ICALP), pages 782-792, 2004.
Z. Jafargholi and E. Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326-343, 2016.

D. M. Kane, S. Lovett, and S. Moran. Near-optimal linear decision trees for k-SUM and
related problems. In Proc. 50th Annu. ACM Sympos. on Theory of Computing (STOC),
pages 554-563, 2018.

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick. Selection from heaps, row-sorted matrices,
and X +Y using soft heaps. In 2nd Symposium on Simplicity in Algorithms (SOSA@SODA),
pages 5:1-5:21, 2019.

H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir. Submatrix maximum queries in Monge
matrices and Monge partial matrices, and their applications. In Proc. 28rd Annu. ACM-

SIAM Sympos. on Discrete Algorithms (SODA), pages 338-355, 2012.

M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM
J. Comput., 26(5):1384-1408, 1997.

E. Keogh and A. C. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge

and Information Systems, 7(3):358-386, 2005.

BIBLIOGRAPHY 109

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

E. J. Keogh and M. J. Pazzani. Scaling up Dynamic Time Warping to Massive Datasets,
pages 1-11. Springer Berlin-Heidelberg, 1999.

E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining applications.
In Proc. 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 285-289, 2000.

D. E. Knuth. Optimum binary search trees. Acta Informatica, 1(3):270-270, 1972.

T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In
Proc. 27th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 12721287,
2016.

K. Labib, P. Uznanski, and D. Wolleb-Graf. Hamming Distance Completeness. In Proc. 30th
Annu. Sympos. on Combinatorial Pattern Matching (CPM), pages 14:1-14:17, 2019.

F. Le Gall. Faster algorithms for rectangular matrix multiplication. In Proc. 53rd Annu.
IEEFE Sympos. on Foundations of Computer Science (FOCS), pages 514-523, 2012. Also in
arXiv:1204.1111, 2012.

F. Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 89th International

Sympos. on Symbolic and Algebraic Computation (ISSAC), pages 296-303, 2014.

F. Le Gall and F. Urrutia. Improved rectangular matrix multiplication using powers of
the coppersmith-winograd tensor. In Proc. 29th Annu. ACM-SIAM Sympos. on Discrete
Algorithms (SODA), pages 1029-1046, 2018.

A. Lincoln, V. V. Williams, J. R. Wang, and R. Williams. Deterministic time-space trade-offs
for k-SUM. In Proc. 43rd Int’l Collog. on Automata, Languages, and Programming (ICALP),
pages 58:1-58:14, 2016.

W. J. Masek and M. S. Paterson. A faster algorithm computing string edit distances. Journal
of Computer and System Sciences, 20(1):18-31, 1980.

J. Matousek. Computing dominances in E™. Inform. Process. Lett., 38(5):277-278, 1991.

S. Meiser. Point location in arrangements of hyperplanes. Information and Computation,

106(2):286-303, 1993.

A. Mirzaian and E. Arjomandi. Selection in X + Y and matrices with sorted rows and

columns. Information processing letters, 20(1):13-17, 1985.

M. Miiller. Information Retrieval for Music and Motion, pages 69-84. Springer Berlin-
Heidelberg, 2007.

BIBLIOGRAPHY 110

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

D. Peleg and A. A. Schiffer. Graph spanners. Journal of Graph Theory, 13(1):99-116, 1989.

D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Comput.,
18(4):740-747, 1989.

D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. J. ACM,
36(3):510-530, 1989.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag New York, NY, 1985.

M. Pétragcu. Towards polynomial lower bounds for dynamic problems. In Proc. 4/2nd ACM
Sympos. on Theory of Computing (STOC), pages 603-610, 2010.

M. Patragcu and R. Williams. On the possibility of faster SAT algorithms. In Proc. 21st
Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 1065-1075, 2010.

M. Rabin. Probabilistic algorithms. In Algorithms and Complexity, Recent Results and New
Directions, Academic Press, pages 21-39, 1976.

C. A. Ratanamahatana and E. Keogh. Three myths about dynamic time warping data
mining. In Proc. 2005 SIAM International Conference on Data Mining, pages 506-510,
2005.

L. Roditty, M. Thorup, and U. Zwick. Roundtrip spanners and roundtrip routing in directed
graphs. In Proc. 18th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages
844-851, 2002.

L. Roditty and V. V. Williams. Fast approximation algorithms for the diameter and radius of
sparse graphs. In Proc. 45th ACM Sympos. on Theory of Computing (STOC), pages 515-524,
2013.

K. F. Roth. On certain sets of integers. Journal of the London Mathematical Society,
28(1):104-109, 1953.

M. I. Shamos. Geometric complexity. In Proc. of 7th Annu. ACM Sympos. on Theory of
Computing (STOC), pages 224-233, 1975.

M. A. Soss, J. Erickson, and M. H. Overmars. Preprocessing chains for fast dihedral rotations

is hard or even impossible. Comput. Geom., 26(3):235-246, 2003.
T. Tao and V. Vu. Additive Combinatorics. Cambridge University Press, 2006.

M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th Annu. ACM Sympos. on
Parallel Algorithms and Architectures (SPAA), pages 1-10, 2001.

BIBLIOGRAPHY 111

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, 2005.

V. Vassilevska, R. Williams, and R. Yuster. All pairs bottleneck paths and max-min matrix

products in truly subcubic time. Theory of Computing, 5(1):173-189, 2009.

T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52-57,
1968.

K. Wang and T. Gasser. Alignment of curves by dynamic time warping. Annals of Statistics,

25(3):1251-1276, 1997.

X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Experimental
comparison of representation methods and distance measures for time series data. Data

Mining and Knowledge Discovery, 26(2):275-309, 2013.

0. Weimann, A. Abboud, and V. V. Williams. Consequences of faster sequence alignment. In
Proc. 41st Int’l Collog. on Automata, Languages, and Programming (ICALP), pages 39-51,
2014.

R. Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. J. Combinatorial Theory, Series
B, 52(1):11371167 1991.

V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc. 44th
Sympos. on Theory of Computing (STOC), pages 887-898, 2012.

V. V. Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In Proc. 51st Annu. IEEE Sympos. on Foundations of Computer Science (FOCS),
pages 645654, 2010.

V. V. Williams and R. Williams. Finding, minimizing, and counting weighted subgraphs.
SIAM J. Comput., 42(3):831-854, 2013.

R. Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted APSP.
In Proc. 20th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 950-957,
20009.

U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.

J. ACM, 49(3):289-317, 2002.

JINID MINSIND IN 0N DN 6 P92

NIV H 90NN avnd 09 DX L, NPTP n oy G Opwimn XD on 90 95 .1

0(n*2y/logn) nn H 2 mnvpn 1900w 75 ,G 5v 20p-v1o(3/2)

H 97 nn 2vnd 091 X, D 90 0y ©NpTp n 9y G 5pwinn X DN 90 935 .2
O(DY3p4310g*3 n) N0 H Yo mnwpn 1900w 72 ,G 5w 107p-va-(5/3) Ninv

D = Awxd 0P wMeT(3/2) 9 NN May 1 ypa Donan Ny 20 1t 0on
0(y/n/logn)

NN e € [0,1] 935 ,ompmp n Yy G = (V. E) Spwimn x5 o0 9 jnyna .3

.0N2M TN X ovpnn H = (V, Ey C E) 907nn avnh 091>

w,mnwp O(n? “log' “n) oy MWp-wma-(1+6) 20 H (N)

nvp O(n'€log®n) oy 2M01p~vMo~(2 — §) N0 H (3)

,(6 P92 DN TWUN) NI OINT RID XD NN NOYND MINIANND MXNIND MOV OVD
DYy D97 MNAY D) MTY MOV MXNND NN DY .DOPYIND XD DIMDN 0297 NI
oy [1, W] onnnn m5pwn oy on 993 G Ox .mnvpn Sy (1 mnad) 022N mNpwn
JV 5702 200 09032 5950 09D GO DTN H DY nnonnn i, mnvpn

0’901 DXND DIPIN NN ,DPITN 0N 21 1 O9YDN DNONNY DRIN O N [64] 2
12202 0P WM DANTINN PINND N2 TV NI D) DX .OVNY D9NTINN DY
O NTIAYA ON MRNN 00010 XD DX TN (9D MNYP OV NaDIN/NTNN NNN) NN»T
D901 ©VIAY [64] O NNPN NN DN

DV N2 ,TPONNN NN DXIMIYN DN IVIP PVNS DONVINNY TA02 1t N
DX9NTNN MY D) DPRNN (DXINDN KO D9 DY D>TAIYY) "9 DVND D9NINN DY
DTRYVIND VNI DD NDOT MNP NP DY T0IP 2WNG D97)7NN 0791 .IVIP WNI

.[95] (backbone networks) N7TY MNYIY 0210

901p W9 D9NTIINN 4

TN WK (diameter spanners) "0 YWMY” DONTINN DY IPNN DOINN NN 6 P92
Keerti Choudhary 1 22nnn 5v [64] 908NN DY DD Nt P9 T

RN wn G = (V. E) yon XY 9 DY (spanner D) RIPI) YN YW NN
P2 OPNPNN (NP2 OIXPN) OPNINN 9O NN PP mwn Wwr H = (V, Ey C E)
G YV (t-spanner) VNSt 9NN NN H o9 19Na .G 92 NpTipn nor 9>
1 dy(u,v) WNd dy(u,v) < t-dg(u,v) o7pMm w,v € V. omMpTip m 955 b0”dN
"NRPNN’N VN9 B) NIPY ¢ VNN .INNNA G H 2 v Y u y2 opnInn on dg(u, v)
TAND 2vWN) G Ny "210 v g-nn” Lt nenn onIm G 90 ynena LH Sv (stretch)
.G OV 00YD)9 DIMNI) IPMYNYN NDOT MNYP MNd 1D WY

[14] Althofer et al. .([131,130,21] 1X7) 80 N NV NNHYNXIY NN DWN DONNN
(2k — 9 DN W OTIPTIP 1 DY (MOPYVINND MNYP DY J91») NN KXY 97 Y35V XN
N DN 0Yp NN O ON Lk > 0 yao 19on 995 mnvp O(n'tYE) oy wmatl)
9N NN MNYPN 1901 P2 MmN (trade-off N) M mnn 5Opw [83] Erdds bv girth
DODPVMNN NI PV (stretch) NNYNNN VNI YNaN

DVIPY TN N2IN W DVYNS DONTINNY ,IDONMND NN DXIMIYN DN TA9N
,15] 2172 MNODY NNYPN MNYI ,MINAN MOIYN NI ,AVNNN VTN DY DNY DNINN2
,66 ,65] AN OINP OODON NP L[72 ,67] NyNN ON L[145 ,139 ,132 96 ,95 ,69 ,68
.[146 ,29] PN MNDRY DY O ONNI)M ,[78

DTN PORY T MNvp Q(n?) Dy D7) DNYPY MKRIND 1), 00NN 097 Ny
9N 0P DY STHA XIN VY DNNND T0NIOY GNTNN DD TN GNNN DNR NYP OV
N MDD D9 MNAY)00 (N2 NPT M P OHDOPNN NP IXPH PNIND)
NYOIN NN IO9D ¢ NNYNN VNI NIAY (OOT) OIYN VYN O9NTNN DIAPY NN
,D 20 oy G = (V,E) 191 90 1NYN2 I0PHOYNTE DOVOIRN NPND 1PN 0MN
JtD] anvn 935 i H v qoipn 0”or cop-vnet 80 H = (V, Ey C E) 9°nn

NN NN M .6 P92 IRDY 29> Mmnvp O(n) oy Mmd H nad 5p ¢t = 2 May

INAD DOINN NONYYD

NN G 5w oNd Lt < 2 nenn onIo G = (VE) on 9 1nyvna :nvRy
N NYNY N> By 5w 91an yop nnd P or 1H = (V, Ey C E) 20w vnat

25 Mt 5T a2 (trade-off N) MMmnn SOpvw

N

09PN MTIPY NP SV T;pa "onNY DI D90

M NNoNn May [111] Indyk ef al. SY IRHIND NN DOLYIM DAI9WN X 5 P19
Y2 MNAY IV ORI DX L, NPLVN DNN M) TN NP MNP MNP
5y W, O(DP(n,d)logn) yta YIv pin-myong >oo»nivT DmwaInoR Oy 1
N0 ot oon XN DP(n,d) Awrd ,O(DP(n,d)) yat NoMNa YIv 77 DINON
Y001 [7, 7] NOw 75 D nsaon oan ;RY 2 mmpy n Sv dominance product 21wn9
MOPTNNIPN 1990 IR o0 DIi, j| 95 D[i, j| = [{k | p:i[k] < p;[k]} nrnd 2 1om
pi 2y VW p; N3V

MOPTNNIPN 93 N Lo D00 NN RE 2 mmMp) an nNoNn nvya v non May
YV ONIMONR ORI NN [—M, M] DIND NYOND DOV DIaDNn DN MMPIN HY
N9951 S¥ NN A PN NN w(l, 7, 1) wrs ,O(min{ Mn<OmD DP(n, d)}) yora
2n” X n 97N NYIVNA N X n' YT NXIVN

SV ANy Y995 M) > T-Yy ,DP(n,d) M2y D0 INY N¥P DNON DIMI NN Q0N
DNON NIANN > T~DY .NPIAON MPIVN D951 vNRNYN WX L[156] Yuster DY DMINONRN
52P5 Y1) 00NN NDRY MNP ([124 ,122] X)) N”ADN MNIVN NOION NAY DMIDTY
,N2wN NPwn w0 mxya dominance product 20 .DP(n,d) May omwn 0mon
YDA NPY2 PIND DNIINON T2 (NNNY XDUMPI) Mt WD DVNNYHNY DIVH
mmon MxoM (73] (APBP) all-pairs-bottleneck-paths 12 ,(135w oo qona)
.[156] (APSP) all-pairs-shortest-paths Sv

2wn RY aw wan [121] Uznanski 1 ,Labib ,Graf ,[99] 25% =nnNnn 9nNS
MNP T NNONND (DNNINDINS O X1 TY) N 9pv dominance product
OO WP p 9D NAYY PYI) HNTIN WIAP N p > 3 IWND L, NpIvn 95 nnn Inma
MOV IRNINA (.[111] DP(n,d) Yy DONIN PMyNYn Tin 1t 7Py NIy NN 19t 0oN
MTIPI M NN M Nwp MNaY XN RY 2 dominance produt 21¢ Ny NN NWYNY NN
oy Tn Uznaniski 1 ,Labib ,Graf v mxsnn .R? 2 Lo, np>avn nnn anva maap
MTIPY M NN Nyad dominance product 2PN PA AWPN DR MINID OV IRIND

Y Mpravn nNH ANl MAIp

DNMINTTNA NI PNon O() on?

(Loo , Ly 59nD) 1171110919 o0 0721y 719OYN0
DI NPV INYN OO0 IXR) N NN DOND I2YN DX NPYI I9YD N2 KOV TN 1ON»
,SETH ovp nx 0 oxv RN [39] Kiinnemann)y Bringmann v 09,000 an>019
,Jwnna .O(n?2M) yara panad ymy 89 DTW 5w >Toom=Tnn ARIPNN NN 1DON I
MMIAND DM DY NOY 129NV WNIN [2] Bringmann 1 Abboud 1y ,[3] Abboud et al.
,DPMYNYN MOOVWNY NAND 910 ,MMIT NP NNRNN NPY2 NAY DM 990N Nptna

.D2yN 121201 VTN 0NNNN 0NoN Formula-SAT 5 90y 000 onmanoN D

P2 Q0N MM TN AT Mpravn Yyn Discrete Fréchet Distance =0 14m
ONRVY NN [40] Mulzer » Bringmann .Discrete Fréchet Distance 0 mTipy v m1T0
YTIPNTTNN NIPND 129N ,O(nQ‘Q“)) MR A TN avnd) XS ,SETH ovp nx oonn
d(z,y) = PvVITIVON NP>IVNRN DY) R 9wn Sy NNR 55 MTIPI 1YY MITO XNV MNM 12
PIIY DY VIV PINYH™2 NOINN YY N TPYID WY DRIN DX DAY DV 4.5 PHNA (|2 — y|
o7pY NI BN R 2 MTPy 0 YV MITD nv May 99 Ny Yo ,0(nlog n) P
POYN DXTAYVY NPPIVNN IWNRD ,d WP 935 ,O(nlog2 n) PPy oy MIRYY~2d NVONN YY

(Lo ,Li 2) 'ra1moe non

Lo D900 DNN M2 10992 9N1»2 MNP My »mn 3

NPXIVN NNN M) T INPI MDIP MTIPI N NN N»Y NN OIPIN X 5 PI9a
2OV NN 2NNN DY [99] MNNN DY ODDIAN M P9 L
NMY MTIPI N NIXNY 20N NP2 MNP MNP n” mmya R 2 mmipy n ynrna
NN DIMOY DY DNIINION DIV WP NN d TYND 290»n NN JPYa pnanny
NNONPD DN YOO d MY 2ANPHN PINS 2N DXPNN DINIINON DIV’ 1D WD ,idyan
JPNIPIMION NPNIAN 121 NG NN IR (d = n DWNd) DM DTN NIAY PHTY NIN
My ,d =n" IWwNd R 2 Lo Npon NNN AN»a Marp mMp) At 1»yaa opow NN
My .O(dn?) 2 Y3 N Y PINGD VRN DIMIMONIY TN 9P 1 > 0 NYON
M NNOND NAY OORIVPIVTNIN NYRIN ONINORND DX XN [111]) Indyk et al. ,d =n

NN JIIY DIVN NYINTTMYA NN DNOY NRSIND TR, Lo, NPI0N NNN NP2 MNP

SV 1P 90N Yya MNP 0D PRI NXIN NYY DTN NTIY NN OTTTOY NN Aponnv oot
NS

nryaa mwpn Mmoo nmnnannd .0 (n%(loglogn)°M /log®n) yara yaw 3SUM 9

.[125 ,120 ,50 ,25] O NI WYX

IVNIND MIRNNAY DMVMINIOR 2

P79 .MTMIPI HY MITO SNV P AIVNMIND NNRNND NPDDI Ny OIPIN DX 4 P92
29V DNINM 72NnNN S [101 ,98] ©NNNN DY 0D M

aNIN2 MTIPI OV MITO IR OOIPY P "yPnT’s 770 1NN MWIVMIND DNRND 2IWN
,Dynamic Time Warping D0 570NN DNXNND DINNS DTTH .DNDN 1IVN
NN NN DMPIN DN 4 P92 .Discrete Fréchet Distance 1 ,Geometric Edit Distance
JON OTTN DV VNN NPOID

on Geometric Edit Distance (GED) » Dynamic Time Warping (DTW) 07100
OV MATO PTTOY NRNPNN JIT MITO N ODPY P2 T’ S 21wnd 0»D0a o7 TN
SV NV DMINNA 27 ViPwa X¥NY DTW 790 709890 .0101n 01 aNINa MM
P2 INNYD L, NPI0MIND MY P2 DNRND 2P NPT D ,NPPONMAPNYI AVNNN OYTH
0NN NNRNN ,NPPOM TIDY N W 001 DYy NN Nt ,onadom DNA maTo
2 NOND DXVIDYO MINHDNT IND DN PID DINNA DVIPY NI)N MITO Y001AN
“dynamic time warping" »van Sv vion ,ovn Ty .[149 ,138 ,129 ,118-116 ,76 ,70 ,47]
2m Google 2 >0ITIVD VIM ,D>ININN 40,000 5 20 Google Scholar 2 (MNOND DY)
DT TTN OV MDYNM DMIYN NPININN NN DTN N .MINN 270,000 >

oNIND MO P a momn ya o0 (GED wW) DTW n 771 5w 23wnin nivwn)25
GED w DTW 210D w11 iPnvw 210 00 DIWINOND ,INY 09 DNMINON NINND D39
YV 60 N INHWN MPT MON 0 IMOX X1 RY 2 nNX 95 MTpy 7 Sv MATo onv pa
DAIPRN TN MY ,d = 112 * T~ TNN NIPND 129K ,(O(n?) yara ImSd) w1 Iva

O”Vyn Oy D111 019N

S5v 4.1 pona .GED Y DTW 20 M3y 51299700 119t o89Y DIWNRID DMNIIYNRD
nv P2 GED w DTW 2wwnb 0w 50 50 12 'y12090 00NN IR "0121v” DR 1 NMay
IR OONIY DVDIPNIVT DNIIVON MM’ >T-Dy R 2 NAX D95 MNP n DY MITD

NPAIoNN TIY 95 ,ANY M) DTN D) DTY POV onmorn .0(n?/loglogn)

MANRIY P Np1ay k-SUM ,3SUM n nvya 1

Linear £y NNIPY) 7AN»Y) N1y LA-SUM ,3SUM nvyan X 099N X 3 P93
29V NNNM 7aNNnN Y [100] RN DY ©0an M P9 (Degeneracy Testing

oNN wIon0 NN 3SUM 0 nrya Sv mdo5n Noun ,0»vnn 90N n yN»Na
2014 2 NPIPY TIT NI TY LDOND NV DMIDDY OINN DMIIDN VDY DY
O(n?) 3 YIw VIVA T DNPIONY NIywn NN L[103] Pettie 1 Grgnlund »1-5y
NN MY NPRIMINON NPYAY ININ DIPIN ,DDYN PONA .1 1PYaD MOWONIN NIN
k-linear degeneracy 1 k-SUM 125 ,n5v m5oom mro» R 3SUM n nryan mspi1io
AP f(21,. .., Tk) = Ao + D0 jcicp @i TPINDD ¥PN N2 (k-LDT) testing
1 et mpnn .0 € f(AF) oxn wono non k-LDT 0o nvya A € R oo
ONN MDY NORY 1 Y95 k ay A-SUM 0 moya Ny f(xg, ..., x) = Zle x;
mMAIywnn (k=39 112) Mt 0PN 11tV 293) o(n!k/ 27) AT PINAD MM’ WX Ny
DNNNN DMNION DY MNDIND TRN Y19 DD NPNY 1090 DN NPy DV 2IWNN WP DY
P 2 man nyvya may o”on

,0(n%/2) 2on 3SUM 5w »IN»9~4 »mTH NOONN YY DYDY DRI DN 3 P93
,O(n*/?) 2on k-LDT 5o k-SUM 5v »Ix»9=(2k — 2) »m11a7 noSnn Yy npoow
TV NVONN XY DTN OV TPONNS NATHIN MNAY 2.1 PI9 XY NN k£ > 3 DD
O(n®?y/logn) DONN NN (MTH STV DIMK) NHNNNI DIAWN 19N DNIDN (IINIIT
(2k — nVSNN Yy NY21D DY O(n*/ 2\/logn) DONN NNY NS4 NVONN YY NPNDD Sy
IR NOYNN YY NPIIVOV ININY DNWRIN 0N) [103] Pettie » Gronlund Sv »nyH-2)
M2 Y 3SUM 5 »0000907T DNINONR ORIN IR 9012 (o nn N0 3SUM S
Grgnlund 5w O(n?(loglogn/logn)?3) oonn nx 29wn wx ,0(n?loglogn/logn)
TN ,[93] Freund >S5y »On »nda 1982 Dapnnv 0oond Nnt Mt 0on .[103] Pettie 1
word-RAM 1 971 5% 90y Py 91303 apy ,9N» DIV 13OV DIPININD

N)NV TOINNY ON NYYA DY MA NMINNAND MONS ,[100] OV IMNNN INND
SV INYD"2k NVONN XY NYO11OW IXINY [113] Moran 1 ,Lovett ,Kane 5v 797 n¥»9
NPD02 NPY MY D) DOV VYN NVONN 8y WM ,0(knlog? n) P NN k-SUM
N X, Y wno {z4y |z € X, yeY}nwapn nx nd) "X +Y nx Y’ o ,moaon
[54] Chan »71-5y ny¥1a naon MNNann .APSP =1 ,(nnX Y5 0»wnn 09901 n DY Mm8ap

YODIYPNIVT OIINON MM > -0y ,3SUM Hv 19t N1512°0a G0N MNNIND 0N 19VY

Longest Common ,Edit Distance y»a ,0Tp NINY Nryan NN O(n2‘9(1)) }al !
.Moon Maa Ny Dynamic Time Warping ,Discrete Fréchet Distance ,Subsequence
DMIUNY MNONT N2y [154 ,151 ,140 ,135 ,134 ,120 ,112 ,94 ,62 ,38 ,26 ,22 ,16 ,376] WO
.0”5N oNNNN

[2] Bringmann 1 Abboud 1,[3] Abboud et al. »1-5y NNINND WYIV MAD MY
92P |2y MINNY NPYANn NNNR SV NN 32 polylog(n) Sv MW 129y NN
0NINNN ©MON X N PN Formula-SAT »mmandN 05, nemynvn mobvnd
(M2oWNM) PWIPD NPRI MM YN MY .(circuit complexity) 09ayn N1Y22°02 DVIN
SV DNOYY TON ,DONVNN DNY ONPVY T30 01D DIWNTN DNIMINVOND NPV DY
IOVAND PNINAD YIND DTN TITN IOIN 0N NN 9ta polylog(n)

0y NI real-RAM »vaTLON 2N DTD NONYNN YwOy TY NYPON
NPVLITIODN NPPVNRIPIND MY YD NN 9D PY 2WwNN I IWN | (uniform model
2199 TN ,INY PN NN DTN .ONINOND Y T-DY MYNINND IWYNR NMINDIAN MY
LYY YD DY DIINONN DV MNIN 9513 (decision tree model) NOONN YY DTN NN TRND
DY PI200X MV DV PD NPXTA DY NODIAN MOYNDN 9D 12V XY 2T 7Oy NN MIVIN
2190N) MDY NWNN 2DDNI NMOYNDNN P, DTN .(NVN INI) DPIDN DINDN
PMIYN) VY PmYN NN NVONNN YY DY NPOION (MDY DPNDN) YNV PNNN WD
,MOONN YY DV 1121919 TRND NO (2N 215010 DD DV NMAYNDNN 1901 DY 1Oy DON 1NN
M O7ma r-linear decision tree W "IN ~r NVONN YY” NIN N NTIAY2 TPHNN) D) POYVY
SV TPONIMH NITHN .OMIINN 7 INPN DD DY DINYY DMV DN DXIAIONN OMVXAN DD
NTAYN OY 2.1 PHNA XM N OTIN

My L(BSUM v192)) £-SUM May Dgwn NOONN o8y DONIND 1IN 1 NTiaya
nYyas omvn ONMIONX 1D NPATIOS Mpvn Yyn Discrete Fréchet Distance
,Geometric Edit Distance ,Dynamic Time Warping ,3SUM :xan nvraoiman
.High Dimensional Closest Pair under L., 7 ,Dominance Product

Sy ,0N2 MTNOIN NYYIN DY T NTIAYA DRI TAR DD DY NINP NPPD 1N ,NYd

2ODPY MRHINN

851

2YTH DINND IMNNONN NN AYNNN PYTNI DI TATI N OPINVIN DNINININ M’
DWTN 0N DMIMINONND DX DOYTY NN MIPNIN NPYAN a9 May ,0vn Ty OOIN
NPONNA NP NPINNON NPYIAN P2 L(OPIPVNNR) PYND NIV NP2 D2VN ON NIAY
IUND 1 9T VOP MAY O(n€) YA DXV DVITIVD DNIIVON 1NIY DWNT WX YN 0 P
NP2 PN DD0NN 2N N ,NPY DY DINY DND NINDD) c =3 MY c =3 WNc=2
Y00 SV NVYamp 1290M L(APSP) or»won m5hpwn oy pon 902 omphp ot Y5 pa
NN P2 RN Ny, 3SUM 100 ,man no oa nya Xi8nd 1m0 y3t) ¢ = 2 Nay
Dynamic ,Longest Common Subsequence Edit Distance 02 ,mTpy 5v MATo) ,00py
YN nryadow yon Discrete Fréchet Distance v ,Geometric Edit Distance ,Time Warping
SRy neya” 0) MNP WONR Nyl ,O(n2_Q(1)) PR ¥V DIINON NT KD

NP DAPIN)ION NPDDI NPYL NIAY DPHIVNIN DNNINON NINND 7PNDOVINNIN
31 polylog(n) awnd ,0(n¢/polylog(n)) NN NI 3t DY DINVND DNIIVON
NPV NPYA NN YV DYDY N MTAYn ARHIND Lk > 0 yap nver My logt n
Pettie 1y Grgnlund w0 nnINRY 97 .0(n?/polylog(n)) nMsnn onon ord v NPONIP
D901 n YV NNAPA DI9DN 3 DMIYP ONN YIOND) NnoNonn 3SUM n n»yaw [103]
NP AN NN OWNITNN OON DY DNPINON Y NN NN (0 XN OMDOY DPYNN
,[107 ,94] TINKX NPya NN MY PHNN 0OND Nwpwn 3SUM N n»ya DY npoaonv
MIPNN 95 L(BSUM n nvspytd » -y nnt o) 3SUM-Hard nvya oy mxaIpn
XY TN o0 3SUM Sv neo2oon Sy »dv mana

N TY NP D0 PIAND NN OINVN DNIINON NINND PO NOVN IpN1n NTay
NI 00N .DNNNN DIDN NN XT-DY ,DMN»PN DMNINONND NN I19YD 1N NONNN
NN (MINDM RO MAIYYNa ©7MON KO) 70NN’ ONNNN ONON NNDNA O»PN YyTNY
NP0 DY MOV NN TPMYNYN MNTPNN NON MNINKD 0DV NN OY TR 920N
NYYIAN NPT TIT JJO70N onnnn onon” NN T Sy P a nyooa nrya Hv
DN YI5NY ,7wna MTNPd n yn»na ,XonTY . CNF-SAT y ,APSP ,3SUM 05 ,n»omn
YR NPND ATV YA 1 (INVIDY TIT 92N W WY) NN MTIPI VIYY mn»p
0N ANINKRD (3SUM-Hard 5 mymn mnomonn neyan nnx w) 3SUM m> mnad
on nyanwy nnn) 02072 yara CNF-SAT nx ned 1 Xow Nndna » 1rom

N0) Novw yan (SETH mwpa W Strong Exponentail Time Hypothesis X9piv

nINnvn

2YTN 0NN IMNNONN TRD AVNNN PYTHNI NI TATI 1PN DPINDYVNN DNNINON MM’
DVTN 20N DNIPIMONN DX DYTY NN MIPNIN NPYIAN 2N NIy 0N TY OOIN
NPONNA NP NPINNON NPYIAN P2 L(OPIPVNNR) PYND NIV NP2 D2VN ON NIAY
IUND 1 9T VOP MAY O(n€) YA DXV DVITIVD DNIIVON 1NIY DWNT WX YN 0 P
2N NPYA NN, MXIVN DY TPNOVYPIMP NP9ON NPYA NINY \) ¢ =3 MY c =3 N c=2
M2y (APSP o) nNap)) 07wnn mnpwn Dy IN0N 92 0NPTIP Mt 90 P2 N2 8PN 9100nn
NN P2 mRnn nvyar [3SUM oo ,man nwooa nvya X8nd 3o 0 oy ¢ = 2

MTPY SV MITOY Py

NN NPDIDAN NPYIAN NAY DINVN DNIVINONY NVINN XY PN 1t NTIaya
SBSUM 93y 99wn sy~ nn yur oy 0 moNy £-SUM May 19vn noonn Yy e

OTTNN NN D2YNM ONDITIN Y2 DN ONYRIN ONIPINOND e
mMMpPI 5¥ MIT0 v P2 Geometric Edit Distance » Dynamic Time Warping
JON DYYa May 0NY 50 TO TN owan oonn NN "N’ v ann LR 2
POYN DXTYY NPPIVNN TIY DI ,INY DA DTN D) OTAIY NIV NN IMIOND

(Loo ™Y Ly Y22) 777919 NN

Dy NVONN YY ONIM MN ,Discrete Fréchet Distance n 770 2wn n»ya May

JPATID0 NN POYN OTIYY NPPI0VNM WAP TINN TYURD PIRYD VYN Py

M noNn Nay O(n~W) yora yav prnomy9s NN PYNIM 19N DIPION e

L np0on nnn R™ 2 mmpy n i (Closest Pair) anv»a manip mmp)

MWITNN MNYP 1901 DY DX9NINN W SPYINN RO DN 970 DOV NI DN e
SV (92 DTIPTIP M P2 HDOPNN INPI IXPN PNINN) IVIPN NN DINYN TUN
7901 YW NS” ION DN TINNY DNNP DN 2710 YOPY 1995 PP XTI TY X NPHNN 9NN

LOMN 2VND DD ONIMINONR DN |, diameter spanners WN

000

TEL AVIV NU'ONDJIN
UNIVERSITY X' ANTN

233K 50 NWIDRIN
q9PR0 997221 TN WY 20PN DOYTRR TP
P07 W'Y awnng vk 0"

P -2 n1OKRDP N1Ya 9D01RY 23T 29ANYN

IRINT NP2p awh M2
7°9107799% MVPIT
fahva)

7O MY

W 7901 9175 A

2°3X N NYI0N2NN KW BRIOY? WA
»"Ywn ax

	Abstract
	Acknowledgments
	Introduction
	3SUM, k-SUM, and Linear Degeneracy
	Geometric Pattern Matching Algorithms
	High Dimensional Closest Pair under L-infinity and Dominance Product
	Diameter Spanners

	Preliminaries and Techniques
	Preliminaries and Notations
	Techniques

	3SUM, k-SUM, and Linear Degeneracy
	Background
	Summary of Our Results and Related Work
	The Quadratic 3SUM Algorithm and Search-Contours
	Fredman's Trick, Pairwise Sums, and Fractional Cascading
	Grønlund and Pettie's Subquadratic Decision Tree for 3SUM
	Improved Decision Trees for 3SUM, k-SUM, and k-LDT
	Subquadratic Algorithms for 3SUM
	Improved Deterministic Subquadratic 3SUM Algorithm

	Geometric Pattern Matching Algorithms
	Dynamic Time Warping and Geometric Edit Distance
	Problem Statements
	Summary of Our Results and Related Works

	Preliminaries, Tools, and the Quadratic Time DTW Algorithm
	Dynamic Time Warping in Subquadratic Time
	Extension to High-Dimensional Polyhedral Metric Spaces
	Lifting the General Position Assumption

	Geometric Edit Distance in Subquadratic Time
	Near-Linear Depth Decision Trees for Polyhedral Discrete Fréchet Distance
	Problem Statement and Quadratic Algorithm
	Decision Tree for the Euclidean Plane
	Decision Trees for the Decision Problem under Polyhedral Metrics
	Solving the Optimization Problem

	High Dimensional Closest Pair under L-infinity and Dominance Product
	Background
	Summary of Our Results

	Dominance Product
	Generalized and Improved Bounds

	Reducing L-infinity Closest Pair Decision to Dominance Product
	Solving the Optimization Problem
	Strongly-Polynomial Subcubic Algorithms

	A Faster Algorithm for L-infinity Closest Pair with Bounded Integer Coordinates

	Diameter Spanners
	Background
	Our Results and Related Works
	Preliminaries and Techniques
	Construction of Diameter Spanners
	(3/2)-Diameter Spanner
	(5/3)-Diameter Spanner
	General (low-stretch or small-size)-Diameter Spanner

	Conclusions and Open Questions
	Bringing the Four Russians to Geometry: General Position Testing
	Sorting X+Y
	Additional Classical Quadratic Problems

	Bibliography

