

Tel Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

 Blavatnik School of Computer Science

New Algorithms for Some Classical

Problems in P

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

by

Omer Gold

Thesis supervisor: Prof. Micha Sharir

Submitted to the Senate of Tel Aviv University

August 2019

Abstract
The search for optimal algorithms is at the core of computer science since its emergence as a field.

Yet for the majority of the studied problems we do not know whether state-of-the-art algorithms

are the best possible. Among the most popular problems in P are those that have standard algo-

rithms that run in Opncq time for an input of size n, where c “ 2 or 3. For c “ 3 (cubic time),

we can find combinatorial matrix multiplication problems, and computing all-pairs-shortest-paths

(APSP) of a directed real-weighted graph. For c “ 2 (quadratic time), we can find many funda-

mental problems, such as 3SUM, and many basic matching problems between strings, curves, and

point-sequences, such as Edit Distance, Longest Common Subsequence, Discrete Fréchet Distance,

Geometric Edit Distance, and Dynamic Time Warping. These problems are usually referred to as

“quadratic problems”.

In this thesis, we present improved algorithms and decision trees for the following core problems.

• We improve the p2k´2q-linear decision tree bound for k-SUM and the subquadratic algorithm

for the famous 3SUM problem, both obtained by Grønlund and Pettie [104]. Follow-up to

our work, Kane, Lovett, and Moran [114] obtained the breakthrough of showing a 2k-linear

decision tree for k-SUM with near-linear depth. Chan [55] improved our 3SUM algorithm and

currently holds the record for the algorithm with the best runtime bound for the problem.

• We give the first subquadratic algorithms for computing Dynamic Time Warping (DTW)

and Geometric Edit Distance (GED) between two point-sequences in R (and also in Rd, for

any constant d, when the underlying metric is polyhedral), breaking the nearly 50 years

old quadratic time barrier for these problems. The DTW measure is an extremely popular

matching method, being massively used in dozens of applications.

For computing the related Discrete Fréchet Distance, we show linear decision trees with

near-linear depth, for any fixed dimension, when the underlying metric is polyhedral.

• We give improved strongly-polynomial subcubic algorithms for solving the high-dimensional

(e.g., Rn) Closest Pair problem under the L8 metric, and give improved runtime analysis for

computing the related dominance product matrix of n points in dimension polynomial in n.

Computing the dominance product itself is an important task, since it is applied in many

algorithms, in addition to our Closest Pair algorithm, as a major black-box ingredient.

• Another result, unrelated to the main motif of the thesis, shows the existence of sparse

(subquadratic) diameter spanners with various size-stretch trade-offs, and gives efficient al-

gorithms to construct them. That is, given a directed graph G “ pV,Eq and a stretch factor

t ą 0, a subgraph H “ pV,EH Ď Eq is a t-diameter spanner iff diampHq ď rt ¨ diampGqs,

where diampHq and diampGq denote the diameter of H and G, respectively.

i

Acknowledgments
In the next several paragraphs I will thank the people who supported me during the time of

pursuing my PhD. Then, I will share some of my personal experience from the last five years as a

PhD student, so this will be a bit longer than a typical acknowledgments section.

First, I would like to deeply thank my advisor Micha Sharir, who took me under his wings

and guided me on how to approach theoretical computer science. The most valuable thing for me

was the numerous research discussions with Micha, having a peek at how he approaches research

problems, the way he simplifies them and getting fast to their bottleneck, the core one should be

focused on when trying to discover new results. I perceive these discussions as “private lessons” for

a deep analytical thinking, and in particular, for research in theoretical computer science, regardless

of the problems in hand. I feel it totally changed the way I approach analytical problems, and not

only related to research, but also in other complex matters I encounter, such as in programming,

and solving engineering problems. The value of these “lessons” is priceless.

I would like to thank Liam Roditty, who discussed with me about graph diameter algorithms,

and connected me with Keerti Choudhary. This has led to the discovery of non-trivial “diameter

spanners” in directed graphs, and to the joint paper with Keerti [65], which Chapter 6 in this

thesis is based on. This is also the right place to thank my co-author Keerti Choudhary, for her

dedication to our project and the fruitful joint work.

I would like to thank Reuven Cohen, my master’s advisor from Bar-Ilan University, who en-

couraged me to pursue a PhD, and provided all the assistance needed to make it happen. I thank

also Moshe Lewenstein who gave me a valuable feedback for my PhD research proposal, and invited

me to a full week workshop on “Structure and Hardness in P” at the Dagstuhl castle in Germany.

I would like to thank the senior researchers who reviewed this thesis. I felt honored to re-

ceive your reviews. A special thanks goes to the reviewer who noticed that we can shave-off the

log log logn factor from our Dynamic Time Warping and Geometric Edit Distance algorithms that

appear in Chapter 4, using the SMAWK algorithm for totally monotone matrices [9].

I would also like to thank fellow PhD students with whom I had many interesting research

conversation with: Sarel Cohen, who introduced to me some cool research questions in graph

algorithms, and sparked my interest in the field. Dor Minzer, who I shared with some research

problems I have been working on, and gave me valuable feedbacks. Orr Fischer, with whom I had

many interesting conversations about theoretical computer science and academia in general.

Last but by no means the least, I would like to thank my parents, Michael and Neomi, who

supported me throughout this long academic track, from starting as an undergraduate student

in Ben-Gurion University more than 10 years ago, throughout pursuing my master’s in Bar-Ilan

University, and finally, throughout the extensive journey of doing a PhD in Tel Aviv University.

Thank you for your endless support, encouragement, and being there for me whenever needed.

iii

iv

My Personal Experience. Computer science is a relatively new scientific field, and it is emer-

ging with many important discoveries every year. The amount of new significant discoveries in

theoretical computer science that were discovered only during the time I was a PhD student really

amazed me. I feel lucky I had the opportunity to do research in theoretical computer science

during this time in history, as I could witness plenty of new interesting results and breakthroughs

being published by the community in “real time”, and sometimes even to contribute a little bit. I

do not know for how long this rate of new significant discoveries in computer science will continue,

but thinking again about how young this scientific field is (which only 100 years ago nobody knew

about), I guess that this rate will not decline anytime soon.

I remember that when I began my PhD studies in late 2014, my advisor Micha told me about a

recent breakthrough on the 3SUM problem (determining whether there are three numbers that sum

to zero in a given set of n real numbers). Allan Grønlund and Seth Pettie [104] showed that 3SUM

can be solved in subquadratic time. Although only small polylogarithmic factors were improved

over the well-known Θpn2q time bound, this result made huge strides, since the 3SUM problem is

well-known for basing conditional lower bounds for many other problems, and therefore, it raised

doubts on the optimality of many other algorithms, such as for determining whether n given points

in the plane are located in a general position (i.e., no three points lie on a common line).

The same day, I started reading the paper of Grønlund and Pettie with enthusiasm, hoping

that maybe a further improvement is possible. Since it was the first serious theory paper I read, it

took a while until I controlled the details. It took months of thinking and many discussions with

Micha until finally finding a way to improve their algorithm and decision tree bounds. Although

the improvements were small (shaving polylogartihmic factors from both bounds), the exciting

thing was that my first theory result was about a well-known problem.

Later, Timothy M. Chan [55] improved a bit further the algorithmic time bound for 3SUM (by

another logarithmic factor). In 2017, a breakthrough on this problem came from Daniel Kane,

Sachar Lovett, and Shay Moran [114], who showed that the decision tree complexity of 3SUM is

near-linear, improving significantly our Opn3{2q decision tree bound (and the Opn3{2?lognq bound

of Grønlund and Pettie). I was very surprised that such a significant improvement is even possible.

Their technique also gave near-linear decision tree complexity bounds for other core problems,

such as “Sorting X`Y ” and “All-Pairs-Shortest-Paths”. What I described in this paragraph truly

relates to what I mentioned in the first paragraph, about being lucky to witness breakthroughs

during this time, especially when they are related to topics I have been working on.

Then, I have been working on extending the technique we used for the 3SUM problem, and

looking for other fundamental problems to apply it, but did not find one. Until, one day Pankaj

K. Agarwal gave a talk in our weekly computational geometry seminar about approximation al-

gorithms for the Dynamic Time Warping and Geometric Edit Distance problems [8]. That was

the first time I heard of these problems, and I discovered then that the best known algorithms

v

to solve them use a standard dynamic programming approach that takes quadratic time [150].

During his talk I started to think about whether we can break this quadratic-time barrier. It took

a dramatically more sophisticated use of the techniques used in our 3SUM paper, in conjunction

with other techniques, until we finally managed to break the 50 years old quadratic time barrier for

both Dynamic Time Warping and Geometric Edit Distance by a log logn factor (actually it was

a log logn{ log log logn factor, but thanks again to one of the reviewers of this thesis, who noticed

that we can in fact shave-off the log log logn factor). Now, when I look at this improvement factor

it seems funny, as its growth rate (in proportion to the input size n) is very slow, but this is the nice

thing about theoretical computer science, our goal is to find the optimal algorithm, the one that

its runtime cannot be improved by any asymptotic factor. Practically, our algorithm can perhaps

improve the runtime for very large inputs (depends also on the constant of proportionality in our

time bound) over the standard quadratic-time algorithm.

The next result was on the high-dimensional L8 Closest Pair problem. That is, finding the

closest pair of points under the L8 metric in a given set of n points in Rd, where d “ polypnq

(for example d “ n). We gave a new algorithm for this problem, improving a previous algorithm

of Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat [112]. The thing I remember the

most from this paper is that it appeared in the ISAAC 2017 conference that was held in Phuket,

Thailand in a very nice suites hotel on the beach. It was definitely my most unforgettable academic

trip to date. This trip has led me to travel more in Thailand, learn more about Southeast Asia,

and to visit the Philippines for a whole month a year later. I had a blast in both Thailand and

the Philippines. I met in both countries super friendly people and liked the general relaxed vibe.

After I finished working on these three papers, I felt eager to diversify my research and looked

for areas I have not worked on before. I started exploring more seriously about graph algorithms.

This has led to some interesting discussions with Liam Roditty, who also connected me with

Keerti Choudhary. The work with Keerti has led to our joint SODA paper [65], in which we proved

the existence of various non-trivial “diameter spanners” for directed graphs. That is, that any

sufficiently dense directed graph has a significantly sparser subgraph that preserves the diameter

of the original graph up to a factor that is strictly less than 2 (called also “stretch factor”). We

showed how to efficiently compute such subgraphs with various non-trivial size-stretch trade-offs.

This opens a large room for future work, and it will be interesting to see what new results on this

topic will be further discovered.

Omer Gold

December 28, 2019

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 3SUM, k-SUM, and Linear Degeneracy . 4

1.2 Geometric Pattern Matching Algorithms . 5

1.3 High Dimensional Closest Pair under L8 and Dominance Product 6

1.4 Diameter Spanners . 7

2 Preliminaries and Techniques 10

2.1 Preliminaries and Notations . 11

2.2 Techniques . 12

3 3SUM, k-SUM, and Linear Degeneracy 19

3.1 Background . 20

3.2 Summary of Our Results and Related Work . 23

3.3 The Quadratic 3SUM Algorithm and Search-Contours 24

3.4 Fredman’s Trick, Pairwise Sums, and Fractional Cascading 25

3.5 Grønlund and Pettie’s Subquadratic Decision Tree for 3SUM 28

3.6 Improved Decision Trees for 3SUM, k-SUM, and k-LDT 29

3.7 Subquadratic Algorithms for 3SUM . 34

3.8 Improved Deterministic Subquadratic 3SUM Algorithm 35

4 Geometric Pattern Matching Algorithms 39

4.1 Dynamic Time Warping and Geometric Edit Distance 40

4.1.1 Problem Statements . 40

4.1.2 Summary of Our Results and Related Works 41

4.2 Preliminaries, Tools, and the Quadratic Time DTW Algorithm 43

4.3 Dynamic Time Warping in Subquadratic Time . 44

4.3.1 Extension to High-Dimensional Polyhedral Metric Spaces 55

vi

CONTENTS vii

4.3.2 Lifting the General Position Assumption . 56

4.4 Geometric Edit Distance in Subquadratic Time . 57

4.5 Near-Linear Depth Decision Trees for Polyhedral Discrete Fréchet Distance 59

4.5.1 Problem Statement and Quadratic Algorithm 60

4.5.2 Decision Tree for the Euclidean Plane . 62

4.5.3 Decision Trees for the Decision Problem under Polyhedral Metrics 62

4.5.4 Solving the Optimization Problem . 66

5 High Dimensional Closest Pair under L8 and Dominance Product 69

5.1 Background . 70

5.1.1 Summary of Our Results . 72

5.2 Dominance Product . 73

5.2.1 Generalized and Improved Bounds . 74

5.3 Reducing L8 Closest Pair Decision to Dominance Product 77

5.4 Solving the Optimization Problem . 78

5.4.1 Strongly-Polynomial Subcubic Algorithms 78

5.5 A Faster Algorithm for L8 Closest Pair with Bounded Integer Coordinates 80

6 Diameter Spanners 82

6.1 Background . 83

6.2 Our Results and Related Works . 84

6.3 Preliminaries and Techniques . 86

6.4 Construction of Diameter Spanners . 89

6.4.1 p3{2q-Diameter Spanner . 89

6.4.2 p5{3q-Diameter Spanner . 90

6.4.3 General (low-stretch or small-size)-Diameter Spanner 91

7 Conclusions and Open Questions 93

7.1 Bringing the Four Russians to Geometry: General Position Testing 94

7.2 Sorting X ` Y . 96

7.3 Additional Classical Quadratic Problems . 97

Bibliography 100

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

The search for optimal algorithms is at the core of computer science since its emergence as

a field. Yet for the majority of the studied problems we do not know whether state-of-the-art

algorithms are the best possible. Among the most popular basic problems in P are those that have

standard algorithms that run in Opncq time, where c “ 2 or 3. For c “ 3 (cubic time), we can find

many kinds of combinatorial matrix multiplication problems, and for c “ 2 (quadratic time), we

can find many fundamental problems, such as 3SUM, and many basic matching problems between

strings, curves, and point-sequences, such as Edit Distance (ED), Longest Common Subsequence

(LCS), Geometric Edit Distance (GED), Dynamic Time Warping (DTW), and Discrete Fréchet

Distance. Since no Opn2´Ωp1qq-time algorithm is known for any of these problems, they are usually

referred to as “quadratic problems”.

Motivated to find optimal algorithms for these basic problems, researchers have developed

improved algorithms with time bounds of the form Opnc{polylogpnqq, where polylogpnq stands for

logk n, for some constant k ą 0. Due to these works, the complexity of many classical quadratic

problems has now upper bounds of the form O
`

n2{polylogpnq
˘

. It was only recently that the

well-known 3SUM problem (determining whether there are three numbers in a given set of n

real numbers that sum to zero) was shown to have such a subquadratic bound by Grønlund and

Pettie [104]. Since the complexity of the 3SUM problem serves as a lower bound for numerous

other problems [95, 108], which are also called 3SUM-Hard problems (shown by reductions from

3SUM), any better understanding of its complexity is highly desired.

A complementary line of research to that of searching for optimal algorithms is to better under-

stand our limits for faster algorithms by proving lower bounds. However, it seems that our current

knowledge on “real” (unconditional) lower bounds is very limited. Nevertheless, in recent years, a

significant progress has been made towards a better understanding of the hardness of basic pro-

blems in P, by proving “conditional lower bounds” via reductions from core problems, such as 3SUM,

pmin,`q-matrix multiplication (APSP), and CNF-SAT. For example, determining whether there are

three collinear points in a set of n points in the plane is known to be at least as hard as 3SUM (this is

one of the aforementioned 3SUM-Hard problems). It was recently shown that, assuming that CNF-

SAT takes Ω
`

2p1´op1qqn
˘

time (which is implied by the so-called Strong Exponential Time Hypothe-

sis (SETH)) implies that there is no O
`

n2´Ωp1q˘-time algorithm for LCS, Discrete Fréchet Distance,

Edit Distance, and DTW. See [3–6,17,23,27,38,63,95,113,122,137,138,142,153,156], for examples

of such conditional lower bounds.

Recent seminal works by Abboud et al. [3], and by Abboud and Bringmann [2] show that even

an improvement by a sufficiently high polylogarithmic factor for any of these problems would lead

to significant consequences, such as faster Formula-SAT algorithms, or new circuit complexity lower

bounds. These works suggest that current state-of-the-art algorithms for these problems may be

optimal, or near optimal, in the sense that polylogarithmic factor improvements in runtime may

be the only way to push the efficiency of the solution “to the limit”.

CHAPTER 1. INTRODUCTION 3

The review so far pertains to the standard real-RAM model (also referred to as the uniform

model), which counts all the standard arithmetic and boolean operations performed by the algo-

rithm. A degenerate, yet very popular model is the decision tree model, in which each branching

is based on sign test of some (usually constrained) algebraic expression on the input values (note

that this model does not count such a sign test on non-input values as a branching operation). In

this model only branching operations are counted. The complexity of a decision tree is its depth

(which bounds the number of branching operations in any execution). A very popular type of

the decision tree model that we will often study in this work is the r-linear decision tree model,

where all the algebraic expressions are restricted to be linear and with at most r terms. A formal

definition of this model and its randomized variant are given in Section 2.1.

In this thesis, we give improved algorithms and decision trees, for some of the core problems

in P, such as 3SUM, Dynamic Time Warping (DTW), Geometric Edit Distance (GED), Discrete

Fréchet Distance, Dominance Product, and the High-Dimensional Closest Pair problem under L8.

In Chapter 3, we improve the 4-linear decision tree bound and the subquadratic algorithm of the

famous 3SUM problem, and the p2k ´ 2q-linear decision bound for k-SUM and Linear Degeneracy

Testing, given by Grønlund and Pettie [104]. Follow-up to our work, Kane, Lovett, and Moran [114]

have obtained a fascinating breakthrough on these problems, such as showing that the 2k-linear

decision tree complexity of k-SUM is only Opkn log2 nq.

In Chapter 4, we give the first subquadratic algorithms for computing Dynamic Time Warping

(DTW) and Geometric Edit Distance (GED) between two point-sequences in R, breaking the 50

years old quadratic barrier of these problems. The DTW and GED measures are extremely popular

matching methods, being massively used in dozens of applications, such as speech recognition,

geometric shape matching, DNA and protein sequences, matching of time series data, GPS, video

and touch screen authentication trajectories, music signals, and countless data mining applications.

see [48,71,77,118–120,132,140,151] for some examples. To date, searching “dynamic time warping”

(with quotes) in Google Scholar yields approximately 40, 000 papers, and approximately 270, 000

results in the standard web search. This illustrates the tremendous popularity and importance of

this measure.

In Chapter 5, we give improved algorithms for high-dimensional closest pair problems under

the L8 metric. A standard (trivial) cubic time algorithm can find the closest pair in a set of n

points in Rn. We give the first strongly-polynomial subcubic algorithm for this problem, improving

the previously known weakly-polynomial subcubic bound [112]. We also give improved runtime

analysis for computing the related dominance product matrix of n points in dimension polypnq.

In the following sections, we give a short overview for each of the chapters of this thesis.

CHAPTER 1. INTRODUCTION 4

1.1 3SUM, k-SUM, and Linear Degeneracy

In Chapter 3 we study the 3SUM, k-SUM and Linear Degeneracy problems. This chapter is based

on the article [101] by the author and his advisor.

Given a set of n real numbers, the general 3SUM problem is to decide whether there are three

of them that sum to zero. Until a recent breakthrough by Grønlund and Pettie [104], a simple

Θpn2q-time deterministic algorithm for this problem was conjectured to be optimal. (In fact, an

early study of 3SUM-Hard problems by Gajentaan and Overmars [95] denoted them as “n2-Hard”

problems.) Over the years many algorithmic problems have been shown to be reducible from

the 3SUM problem or its variants, including the more generalized forms of the problem, such as

k-SUM and k-variate linear degeneracy testing (k-LDT). Given a linear function fpx1, . . . , xkq “

α0`
ř

1ďiďk αixi and a finite set A Ă R, the k-variate linear degeneracy testing problem (k–LDT)

is to decide whether 0 P fpAkq. When fpx1, . . . , xkq “
řk
i“1 xi the problem is called k-SUM. For

a general k, it is an open question whether these problems can be solved in opnrk{2sq time (as

mentioned above, for k “ 3 we can). The conjectured hardness of these problems have become

extremely popular for basing conditional lower bounds for numerous algorithmic problems in P.

In Chapter 3, we show that the randomized 4-linear decision tree complexity of 3SUM is

Opn3{2q, and that the randomized p2k ´ 2q-linear decision tree complexity of k-SUM and k-LDT

is Opnk{2q, for any odd k ě 3. (See Section 2.1 for a formal definition of the randomized r-

linear decision tree model.) These bounds (albeit being randomized) improve the corresponding

Opn3{2?lognq and Opnk{2
?

lognq bounds obtained by Grønlund and Pettie [104] (they are the

first who showed a linear decison tree for 3SUM with a subquadratic depth). Additionally, we

give another deterministic algorithm for 3SUM that runs in Opn2 log logn{ lognq time, improving

the corresponding O
`

n2plog logn{ lognq2{3
˘

time bound of Grønlund and Pettie [104]. The latter

bound matches an independent bound by Freund [94], but our algorithm is somewhat simpler, due

to a better use of the word-RAM model.

Following our work, there were many recent developments on these problems.

• A breakthrough by Kane, Lovett, and Moran [114] proved that the 2k-linear decision tree

complexity of k-SUM is only Opkn log2 nq, and gave near-optimal decision trees also for other

fundamental problems such as “sorting X ` Y ”, and APSP. 1

• Chan [55] improved another logarithmic factor in the time complexity of 3SUM, showing a

deterministic algorithm for 3SUM that runs in O
`

n2plog lognqOp1q{ log2 n
˘

time.

• Lincoln et al. [127] proved that existing 3SUM algorithms can be implemented to use only
rOp
?
nq read/write memory space-size.

1Their k-SUM decision tree complexity bound significantly improves our bound, albeit our bound is in the
p2k ´ 2q-linear decision tree model, which is slightly weaker than the 2k-linear decision tree model.

CHAPTER 1. INTRODUCTION 5

• Positive 3SUM instances can be trivially confirmed in Op1q nondeterministic time. Carmosino

et al. [51] proved that negative 3SUM instances over integers can be confirmed in rOpn3{2q

nondeterministic time. They suggest that this result makes it “unlikely” that SETH implies

an Ωpn2´op1qq-lower bound for 3SUM over integers.

• Barba et al. [26] studied a polynomial variant of 3SUM, in which the criterion x` y ` z “ 0

is replaced by fpx, y, zq “ 0, for some constant-degree polynomial f . They showed an

algebraic decision tree with depth Opn12{7`εq, for any ε ą 0, for this problem, and an

actual subquadratic algorithm that runs in Opn2{polylogpnqq time. They also showed that

general position testing in the plane (also known as 3-Collinearity: testing whether any three

input points lie on a line) can be solved in subquadratic time, assuming the n input points

lie on at most plognq1{6´ε constant-degree polynomial curves.

• Kopelowitz, Pettie, and Porat [122] showed that any Ωpn3{2`εq-lower bound on 3SUM over

integers implies lower bounds on various problems such as triangle enumeration and offline

set disjointness. Their results improve the conditional lower bounds of Pǎtraşcu [137].

1.2 Geometric Pattern Matching Algorithms

In Chapter 4 we study basic geometric pattern matching problems. This chapter is based on the

articles [99,102] by the author and his advisor.

Geometric pattern matching is the popular task of aligning or measuring similarity between

curves or point-sequences in some metric space. Very popular similarity measures are Dynamic

Time Warping, Geometric Edit Distance, and Discrete Fréchet Distance. In Chapter 4 we study

the problems of computing these measures.

Dynamic Time Warping (DTW) and Geometric Edit Distance (GED) are basic similarity me-

asures between curves or general temporal sequences (e.g., time series) that are represented as

sequences of points in some metric space pX, distq; formal definitions of both measures are given

in Chapter 4. The DTW measure is massively used in various fields of computer science and com-

putational biology, such as speech recognition, geometric shape matching, comparing DNA and

protein sequences, music signals, time series data, GPS, video and touch screen authentication

trajectories, and countless data mining applications. See [48,71,77,118–120,132,140,151] for some

examples.

Consequently, the task of computing the DTW (or GED) measure is among the core problems

in P. Despite extensive efforts to find more efficient algorithms, the best-known algorithms for

computing the DTW or GED between two n-point sequences in X “ Rd are long-standing dynamic

programming algorithms that require quadratic runtime, even for the one-dimensional case d “ 1,

which is perhaps one of the most used in practice.

CHAPTER 1. INTRODUCTION 6

First Subquadratic Algorithms for DTW and GED. In Section 4.1, we break the nearly 50

years old quadratic time bound for computing DTW or GED between two sequences of n points in

R, by presenting deterministic algorithms that run in O
`

n2{ log logn
˘

time. Our algorithms can

be extended to work also in high-dimensional spaces Rd, for any constant d, when the underlying

distance-metric dist is polyhedral2 (e.g., L1, L8).

It is very plausible that these problems cannot be improved beyond this kind of bound (or at

most a “small” polylogarithmic-factor improvement), as Bringmann and Künnemann [39] showed

that even one-dimensional DTW has no Opn2´Ωp1qq-time algorithm, unless SETH fails. Subse-

quently, Abboud et al. [3], and Abboud and Bringmann [2] showed that even a sufficiently large

polylogpnq-factor improvement over the quadratic-time upper bound of similar matching problems,

would lead to major consequences, such as faster Formula-SAT algorithms and new circuit lower

bounds.

Discrete Fréchet Distance under Polyhedral Metrics. Another popular similarity measure

between curves and point-sequences is the Discrete Fréchet Distance. Bringmann and Mulzer [40]

showed that, assuming SETH, this problem cannot be solved in O
`

n2´Ωp1q˘ time, even for the

one-dimensional case (with the standard distance function distpx, yq “ |x´ y|). In Section 4.5 we

show that there is a simple 2-linear decision tree for this problem with depth only Opn log2 nq, and

in general, for two point-sequences in Rd, we show that there is a 2d-linear decision tree with depth

Opn log2 nq, for any constant d, when the underlying distance metric is polyhedral2 (e.g., L1, L8).

1.3 High Dimensional Closest Pair under L8 and

Dominance Product

In Chapter 5 we study the problem of computing high-dimensional closest pair under L8. This

chapter is based on the article [100] by the author and his advisor.

Given n points in Rd, the Closest Pair problem is to find a pair of distinct points at minimum

distance under some specific metric. When d is constant, there are efficient algorithms that solve

this problem, and fast approximate solutions for general d. However, obtaining an exact solution

in very high dimensions (e.g., d “ n) seems to be much less understood. We consider the high-

dimensional L8 Closest Pair problem in Rd, where d “ nr for some r ą 0, and the underlying

metric is L8. Clearly, a naive algorithm can solve this problem in Opdn2q time. For d “ n, Indyk

et al. [112] give the first non-trivial subcubic-time algorithm for solving L8 Closest Pair, however,

their result is weakly-polynomial since its runtime includes a factor that depends on the diameter

of the input points.
2That is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope with a

constant number of facets (this constant generally depends on the dimension d).

CHAPTER 1. INTRODUCTION 7

In Chapter 5, we improve and simplify the result of Indyk et al. [112] for L8 Closest Pair, by

showing that this problem in Rd can be solved by a deterministic strongly-polynomial algorithm

that runs in OpDP pn, dq lognq time, and by a randomized algorithm that runs in OpDP pn, dqq

expected time, where DP pn, dq is the time bound for computing the dominance product for n

points in Rd; that is, a matrix D, such that Dri, js “
ˇ

ˇtk | pirks ď pjrksu
ˇ

ˇ; this is the number of

coordinates at which pj dominates pi.

For L8 Closest Pair in Rd where all the coordinates of the points are integers from some interval

r´M,M s, we obtain an algorithm that runs in rO
`

mintMnωp1,r,1q, DP pn, dqu
˘

time, where ωp1, r, 1q

is the exponent of multiplying an n ˆ nr matrix by an nr ˆ n matrix. (The rOp¨q notation hides

poly-logarithmic factors.)

We also give slightly better bounds for DP pn, dq, over the known ones [129, 158]. by giving a

more general analysis to the algorithm of Yuster [158] that uses rectangular matrix multiplications.

By plugging into our analysis the best-known bounds for multiplying an nˆ d matrix by a dˆ n

matrix (see [124, 126]), one can obtain improved bounds for computing DP pn, dq. Computing the

dominance product itself is an important task, since it is applied also in many other algorithms

as a major black-box ingredient (in addition to our L8 Closest Pair algorithm), such as algorithms

for APBP (all pairs bottleneck paths) [74], and variants of APSP [158].

Following our work, Graf, Labib, and Uznański [123] showed that in Rd, dominance product

is computationally equivalent (up to polylogarithmic factors) to Closest Pair under any L2p`1

metrics (i.e., L3, L5, L7, . . .). (Note that for any even constant p the runtime bound for solving Lp
Closest Pair is currently much smaller than DP pn, dq [112].) In our result we actually show that

d-dimensional dominance product is at least as hard as d-dimensional L8 Closest Pair. The result

of Graf, Labib, and Uznański [123] together with our result show an interesting computational

connection between dominance product and high-dimensional Closest Pair problems.

1.4 Diameter Spanners

In Chapter 6 we initiate the study of Diameter Spanners, described below. This chapter is based on

the article [65] by the author and Keerti Choudhary on Extremal Distance Spanners. Since in [65]

there are further results that we do not include in this thesis, we could simplify the presentation

of the proofs of the theorems in Chapter 6 compared to their corresponding proofs in [65].

A spanner (also known as distance spanner) of an undirected graph G “ pV,Eq is a subgraph

H “ pV,EH Ď Eq that approximately preserves all the pairwise distances between vertices in

the underlying graph G. Formally, H is a t-spanner of G iff for any pair of vertices u, v P V ,

dHpu, vq ď t ¨dGpu, vq, where dHpu, vq and dGpu, vq are the distances between u and v in H and G,

respectively. The parameter t is referred to as the stretch factor of H. Given an undirected graph

G and a stretch factor t, a “good t-spanner” of G refers to a t-spanner that has a significantly

CHAPTER 1. INTRODUCTION 8

smaller (by a polynomial factor) set of edges than G has (i.e., significantly sparser than G).

Spanners were first introduced and studied in the 80s [22,133,134]. Althöfer et al. [15] showed

that any undirected weighted graph with n vertices has a p2k´1q-spanner of with Opn1`1{kq edges,

for any integer k ą 0. Assuming a widely-believed girth conjecture of Erdös [84], this stretch-size

trade-off is essentially optimal.

Besides being theoretically interesting, spanners have numerous applications in different areas

of computer science, such as distributed systems, communication networks and efficient routing

schemes [16,69,70,96,97,135,141,147], motion planning [68,73], approximating shortest paths [66,

67,79], and distance oracles [30,148].

For directed graphs, the notion of spanners is far less understood. That is because we cannot

have sparse spanners for general directed graphs. Even when the underlying graph is strongly

connected, there exists graphs with Ωpn2q edges such that excluding even a single edge from the

graph results in a distance spanner with stretch as high as the diameter. In such a scenario, for

directed graphs, a natural direction to study is construction of sparse subgraphs that approximately

preserves the graph diameter. This property is captured by the notion of t-diameter spanner. Given

a directed graph G “ pV,Eq, a subgraph H “ pV,EH Ď Eq is defined to be a t-diameter spanner

iff the diameter diampHq of H is at most t times the diameter diampGq of G.

For t “ 2 it is easy to construct such a subgraph H with Opnq edges, as described in Chapter 6.

This brings us to the following central question.

Question. Given a directed graph G “ pV,Eq, and a stretch factor t ă 2, can we construct a

t-diameter spanner H “ pV,EH Ă Eq? If so, how small can |EH | be? and what is the trade-off

between t and |EH |?

In Chapter 6 we show the following.

1. For any unweighted directed graph G with n vertices, we can compute a subgraph H that is

a p3{2q-diameter spanner of G, such that H has O
`

n3{2?logn
˘

edges.

2. For any unweighted directed graph G with n vertices and diameter D, we can compute a

subgraph H that is a p5{3q-diameter spanner of G, such that H has O
´

D1{3n4{3 log2{3 n
¯

edges. This is sparser than the above p3{2q-diameter spanner for D “ o
´

a

n{ logn
¯

.

3. Given an unweighted directed graph G “ pV,Eq with n vertices, for any δ, ε P r0, 1s, we can

compute a subgraph H “ pV,EH Ď Eq satisfying one of the following. Either

(a) H is a p1` δq-diameter spanner of size Opn2´ε log1´ε nq, or

(b) H is a p2´ δq-diameter spanner of size Opn1`ε logε nq.

For simplicity, the results given above are stated without runtime bounds (which are given in

Chapter 6), and for unweighted directed graphs. Nevertheless, our diameter spanner constructions

CHAPTER 1. INTRODUCTION 9

support directed graphs with bounded positive edge-weights. If G is edge-weighted with weights

taken from the interval r1,W s, then the stretch of H will only increase by an additional additive

W term, on top of the multiplicative stretch factor t from the unweighted case.

In [65] we show that the bounds from 1 and 2 are tight, and we also study other types of

extremal-distance spanners, such as eccentricity-spanners and radius-spanners. Additionally, we

show in [65] how to maintain extremal-distance spanners in dynamic settings. We do not include

these results in this thesis and refer the reader to [65] for further details.

We believe that extremal-distance spanners are interesting mathematical objects in their own

right. Nevertheless, such a sparsification of graphs suffices for many of the original applications of

the well-studied standard graph spanners mentioned above, such as in communication networks,

facility location problem, routing, etc. In particular, diameter-spanners with a sparse set of edges

are good candidates for backbone networks [96].

Chapter 2

Preliminaries and Techniques

10

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 11

2.1 Preliminaries and Notations

Linear Decision Trees. In Chapter 3 and Section 4.5 of Chapter 4 we study the complexity

of problems in the linear decision tree model of computation, both deterministic and randomized

variants. This model is often used to measure the number of comparison queries that an algorithm

executes.

Consider an input x “ px1, . . . , xnq of n real numbers, for a problem, and consider a Boolean

function f on x. An r-linear decision tree for f is a tree for which each node is labeled with a

linear expression in x with at most r terms, and has two outgoing edges, labeled 0 and 1. The

computation on input x for f proceeds at each node that it reaches by inspecting the sign of its

corresponding r-linear expression. If the sign is positive the computation continues in the subtree

reached by talking the 1-edge, otherwise it continues in the subtree reached by talking the 0-edge.

Thus, the input x follows a path through the tree. Each leaf stores a 0{1 value. We say that a

linear decision tree t decides f iff for every feasible input x, there is such a path in t, so that the

value fpxq is the one stored at the leaf that x reaches.

The complexity of the tree t is its depth depthptq, namely, the maximum length of a path in t

from the root to a leaf. The r-linear decision tree complexity of the function f is

Dpfq “ min
tPT

depthptq,

where T is the set of all r-linear decision trees that decide f .

The definition above refers to the deterministic setting. For the randomized setting, let P be

a probability distribution over a set of r-linear decision trees T that decide a particular function

f . Pptq is the probability that tree t is chosen from this distribution. For a particular input x, let

costpt, xq be the length of the path in t from the root to a leaf, following the branching operations

on the input x. Denote the expected number of branching operations (sign tests) a tree chosen

from T will make on input x by

costpP, xq “
ÿ

tPT
Pptq costpt, xq.

The randomized r-linear decision tree complexity of f is

Rpfq “ min
P

max
x

costpP, xq.

It is easy to observe that, for any function f , Rpfq ď Dpfq. For more details on the decision

tree model and its variants see Arora and Barak [21, Chapter 12].

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 12

Model of Computation. In Chapters 3 and 4, when we analyze the time complexity of our

algorithms, we use a simplified Real RAM model of computation. In this simplified model, “truly

real” numbers are subject only to the unit-time operations: addition/subtraction and comparison.

In all other respects, the machine behaves like a w “ Oplognq-bit word-RAM with the standard

repertoire of unit-time AC0 operations, such as bitwise Boolean operations, and left and right

shifts.

In Chapter 5, we use the standard Real RAM model, which includes also multiplication and

subtraction of real numbers as unit-time operations. For more details on the Real RAM model

(also known as the uniform model) see Preparata and Shamos [136, Page 28].

Notations. The following are useful notations we use throughout the thesis. Additional notati-

ons that are more problem-specific are defined within the corresponding chapters where they are

applied.

• We denote by rN s “ t1, . . . , rN su, the set of the first rN s natural numbers, for any N P R`.

• For a point p P Rd, we denote by prks the k-th coordinate of p, for k P rds.

• The rOp¨q notation is similar to the standard Op¨q notation, but hides polylogarithmic factors.

• In the context of matrix multiplication, ω denotes the exponent of multiplying two square

matrices of the same size. That is, two nˆn matrices can be multiplied in Opnωq time. The

current best known bound for ω is ω ă 2.373 [125]

• Given an algorithm A with runtime T pnq on an input of size n, we say that

– T (resp., A) is strongly subquadratic iff T pnq “ Opn2´εq, for some ε ą 0.

– T (resp., A) is mildly subquadratic iff T pnq “ opn2q and T pnq “ ωpn2´εq, for every ε ą 0.

A typical mildly subquadratic bound is O
`

n2{polylogpnq
˘

.

– Analogously to the above, we use the terms strongly subcubic and mildly subcubic, with

exponent 3 instead of 2.

2.2 Techniques

We present here techniques that will repeatedly appear in most of our results in Chapter 3 and

Chapter 4. Other techniques that are more problem-specific will be described within the corre-

sponding chapters where they are applied.

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 13

The Four Russians. In our algorithms in Chapters 3 and 4, we use variants of the so-called

“Method of the Four Russians” [20] (named after the cardinality and nationality of its inventors),

which sometimes can be exploited to improve algorithms that involve a matrix structure, such as

dynamic programming algorithms. This method was originally used to improve the computation of

the transitive closure of a graph. Since then it was adapted to improve many other algorithms, and

in particular to improve running times by polylogarithmic factors. The basic idea is to decompose

an nˆn matrix into pn{gq2 small sub-matrices (boxes), each of size gˆg. Then the hard challenge

is to find a way to efficiently solve a corresponding sub-problem in each of these boxes, and obtain

the solution for the original problem by combining the answers from the sub-problems, achieving

an overall improved runtime. Usually a preprocessing is carried out to help us solve each of the

small subproblems in a more efficient way. Since in many cases the preprocessing procedure takes

exponential time, the improvement is typically conditioned to choosing the parameter g to be quite

small, such as a suitable fractional power of logn.

Fredman’s Technique for All-Pairs-Shortest-Paths and Sorting X ` Y . Computing

pmin,`q-matrix multiplication (also known as pmin,`q-product) is one of the most studied pro-

blems in algorithm design, gaining its popularity by being closely related to computing all-pairs-

shortest-paths (APSP) in real-weighted directed graphs. Formally, let A and B be nˆ d and dˆn

real-valued matrices, respectively. The pmin,`q-product of A by B is the n ˆ n matrix C whose

elements are given by

ci,j “ min
1ďkďd

tai,k ` bk,ju, for i, j P rns.

Naively, this can be computed in Opdn2q time. A weighted directed graph on n vertices can be

encoded as an nˆn matrix W “ pwi,jq in which wi,j is the weight of edge pi, jq if it exists, wi,i “ 0,

and wi,j “ `8 otherwise. It is easy to see that the matrix Wn, the n-th power of W with respect

to pmin,`q-product, contains the distances between all pairs of vertices in the graph (assuming

there a no negative cycles). Clearly, Wn can be computed by executing rlogns pmin,`q-products.

In fact, it is possible to compute Wn in essentially the same time required for just one pmin,`q-

product (see Aho et al. [10, Section 5.9]). To this date it is a prominent open problem whether

this matrix can be computed in Opn3´εq time, for some ε ą 0.

Fredman showed, in a classical article from 1976 [93], that the number of comparisons needed

to compute the pmin,`q-product of two n ˆ n real-valued matrices is significantly smaller than

n3, and also showed the first algorithm for this problem that runs in mildly subcubic runtime.

Specifically, Fredman showed that the 4-linear decision tree complexity of the pmin,`q-product

problem is only Opn2.5q. He then used this decision tree coupled with the Four Russians technique

to “shave” polylogarithmic factors off the naive cubic runtime bound. Since Fredman’s pioneering

technique is a basic component in our approach, we briefly overview his result for pmin,`q-product.

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 14

Given two n ˆ n real-valued matrices A and B, our goal is to compute the pmin,`q-product

matrix C of A by B. (We assume here that both matrices are of size n ˆ n, i.e., d “ n, for

simplicity.) First, we partition the pmin,`q-product problem into smaller subproblems. Let g ď n

be some parameter that we will fix later. Assume for simplicity that n{g is an integer. We partition

the matrix A into n{g smaller matrices A1, . . . , An{g, each of size nˆg (i.e., n rows and g columns),

and we partition the matrix B into n{g matrices B1, . . . , Bn{g, each of size g ˆ n (i.e., g rows and

n columns). For each i, j P rn{gs, let Air`, ¨s be the set of elements in the `-th row of Ai, and let

Bjr¨,ms be the set of elements in the m-th column of Bj .

We sort the pairwise difference set Air`, ¨s´Air`, ¨s “ ta´ a1 | a, a1 P Air`, ¨su, for every ` P rns.

Then we merge these sorted sets, obtaining the sorted sets

Si “

a´ a1 | a, a1 P Air`, ¨s, for some ` P rns
(

,

for each i P rn{gs. Similarly, we obtain the sorted sets

Tj “

b´ b1 | b, b1 P Bjr¨,ms, for some m P rns
(

,

for each j P rn{gs. In total, for all matrices Ai and Bj , this cost Opn{g ¨ ng2 lognq “ Opn2g lognq

comparisons. Fredman [93] showed that it actually costs only Opn2gq comparisons, removing the

logn factor, by using geometric arguments that we omit here, but explain in Chapter 3. Finally,

we merge the sorted sets Si and Ti, over all i P rn{gs. Overall, this takes Opn2gq comparisons.

Let C` be the pmin,`q-product of A` by B`, for each ` P rn{gs. In order to compute the entries

of C`, we want to know the answers to comparisons of the form ai,k ` bk,j ă ai,k1 ` bk1,j , where

k, k1 P rgs, i, j P rns. Observe that

ai,k ` bk,j ă ai,k1 ` bk1,j ðñ ai,k ´ ai,k1 ă bk1,j ´ bk,j . (2.1)

The main point in “Fredman’s trick” is that we have already computed the comparison on the right

side of (2.1). Therefore, we can now compute the n{g pmin,`q-products matrices C`, for each pair

A`, B`, ` P rn{gs, without using any further input comparisons (that is, comparisons that access

the entries in A,B).

To compute the entry ci,j of the pmin,`q-product matrix C, we take the minimum value among

the pi, jq-entries of the pmin,`q-product matrices C1, . . . , Cn{g. For each entry pi, jq P rnsˆrns of C,

this costs Opn{gq comparisons. Thus, in total, this step costs Opn2 ¨ n{gq “ Opn3{gq comparisons.

Hence, the overall number of comparisons needed is Opn2g`n3{gq. This is minimized when g “
?
n,

and we obtain that the number of comparisons is Opn2.5q. Since we compare linear expressions,

each of at most 4 terms, the 4-linear decision tree complexity of this problem is Opn2.5q.

Fredman [93] also showed how to apply his Opn2.5q-depth decision tree in order to break the

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 15

cubic runtime bound of computing pmin,`q-product of two n ˆ n matrices (and thus of APSP).

The idea behind his approach is to partition each of the matrices A and B into pn{gq2 disjoint

submatrices (boxes), each of size g ˆ g. It is easy to show that the pmin,`q-product of A by B

can be obtained by solving pn{gq3 pmin,`q-products between such boxes. This computation is

done by implicitly constructing the the decision tree described above, but for matrices of size gˆg.

Naively, constructing the tree cost O
´

2g2.5
¯

time. Using this tree we can solve each such pmin,`q-

product of two gˆ g matrices by running through the tree in Opg2.5q time (the depth of the tree).

Overall, we obtain an O
´

2g2.5
` n3{

?
g
¯

runtime. Choosing g “ log2{5 n gives Opn3{ log1{5 nq

time. Fredman actually gave the better runtime bound O
´

n2plog lognq1{3{ log1{3 n
¯

, by showing

a faster construction of the decision tree. However, we omit this construction here and refer the

reader to [93] for details.

Another core problem that Fredman studied is “sorting X ` Y ”. That is, given two sets of n

real numbers X,Y , sort the set X ` Y “ tx ` y | x P X, y P Y u. It is still a prominent open

problem whether there exists a faster algorithm than the Θpn2 lognq-time naive algorithm. Using

“Fredman’s trick” combined with geometric arguments, Fredman [92] showed (also in 1976) that

the 4-linear decision tree complexity of this problem is Opn2q.

Remark. Recently, in a fascinating breakthrough by Kane, Lovett, and Moran [114], the above

decision tree bounds were significantly improved, using different techniques. In particular, they

showed that the 8-linear decision tree complexity of computing pmin,`q-product (or APSP) is

only Opn2 log2 nq, and this complexity is only Opn log2 nq for sorting X+Y. They also showed (by

using similar techniques) that the 6-linear decision tree complexity of 3SUM is only Opn log2 nq;

this significantly improved (in a bit stronger model) our Opn3{2q randomized 4-linear decision tree

complexity bound from Chapter 3 (which improved the Opn3{2?lognq bound of Grønlund and

Pettie [104]). See [114] and Chapter 3 for more details.

Generalized Fredman’s Trick. In our improved DTW and GED algorithms in Chapter 4 we

extend Fredman’s trick to a more general setting of two linear expressions. The generalized trick

is that

a1 ´ b1 ` ¨ ¨ ¨ ` ar ´ br ă a11 ´ b
1
1 ` ¨ ¨ ¨ ` a

1
t ´ b

1
t (2.2)

if and only if

a1 ` ¨ ¨ ¨ ` ar ´ a
1
1 ´ ¨ ¨ ¨ ´ a

1
t ă b1 ` ¨ ¨ ¨ ` br ´ b

1
1 ´ ¨ ¨ ¨ ´ b

1
t. (2.3)

Here too, sorting separately the left-hand expressions and the right-hand expressions in inequa-

lities of the form of (2.3) allows us to obtain, at no extra cost in the linear decision tree model, the

results of the comparisons in the inequalities of the form of (2.2). See Chapter 4 for more details.

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 16

Chan’s Dominance Reporting Technique. Chan [53] introduced a mechanism that combines

Fredman’s trick with a geometric domination technique (see below), which he initially used for

improving the time complexity of APSP by an additional polylogarithmic factor. Later, Bremner

et al. [37] used this Fredman-Chan mechanism to improve decision tree complexity bounds and

polylogarithmic runtime factors, for restricted variants of sorting X ` Y and 3SUM, as well as

other problems. Similarly, Grønlund and Pettie [104] used this combined mechanism to obtain an

Opn2{polylogpnqq-time 3SUM algorithm.

Given a finite set P “ tp1, . . . , pnu of points in Rd such that each point is colored red or

blue, the bichromatic dominating pairs reporting problem is to report all the pairs pi, jq P rns2

such that pi is red, pj is blue, and pi dominates pj , i.e., pi is greater than pj at each of the d

coordinates. A standard divide-and-conquer algorithm by Preparata and Shamos [136, p. 366]

runs in Op|P | logd |P | ` Kq time, where K is the output size. Chan [53] provided an improved

runtime analysis for this algorithm that yields a strongly subquadratic time bound in the number

of points (excluding the cost of reporting the output) when the dimension is d “ Oplog |P |q, with

a sufficiently small constant of proportionality.

Lemma 2.2.1 (Chan [53]). Given a finite set P “ tp1, . . . , pnu of points in Rd such that each

point is colored red or blue, one can report all pairs pi, jq P rns2, such that pi is red, pj is blue, and

pirks ą pjrks for every k P rds, in time Opcdε |P |1`ε `Kq, where K is the output size, ε P p0, 1q is

an arbitrary prespecified parameter, and cε “ 2ε{p2ε ´ 1q.

Throughout this thesis, we invoke Lemma 2.2.1 many times, with ε “ 1{2, cε « 3.42, and

d “ δ logn, where δ ą 0 is a sufficiently small constant, chosen to make the overall running time

of all the invocations dominated by the total output size. In other words, in this case the runtime

of Chan’s procedure is linear in the output size, with a strongly-subquadratic overhead. Another

recent work by Chan [54] gives an efficient (linear in the output size, with a subquadratic overhead,

but not strongly subquadratic as before) dominance reporting algorithm for dimensions slightly

larger, up to d “ Oplog2 n{plog lognq3q. Unfortunately, due to other bottlenecks in our algorithms,

this improved algorithm does not improve the overall runtime of our results.

Since we invoke the algorithm from Lemma 2.2.1 many times throughout this thesis, we feel it

is important to mention that the algorithm is quite simple, thereby its runtime complexity does

not involve large constants nor subtle implementation. For the sake of completeness we provide

here the algorithm and the proof for Lemma 2.2.1.

The Divide-and-Conquer Algorithm. Given a finite set P “ tp1, . . . , pnu of red/blue

points in Rd, the divide-and-conquer algorithms works as follows. If d “ 0, simply report every

pair of red/blue points, so assume d ě 1. Find the median h on the values of last coordinate (the

d-th coordinate) of the n points in Opnq time [36]. Partition P into two disjoint sets PL, PR, each

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 17

of size at most rn{2s, where

PL “ tp P P | prds ď hu

PR “ tp P P | prds ą hu .

If ppi, pjq is a dominating pair, then either both pi and pj are in PL, or both are in PR, or one

(the blue point) is in PL and the other (the red point) is in PR. By executing three corresponding

recursive calls we find the dominating pairs of each of the three kinds. Two recursive calls, each

on at most rn{2s points in Rd, are on all points in PL and all the points in PR, respectively. The

third recursive call is on all blue points in PL and all red points in PR, after stripping their last

coordinate d; that is, at most n points in Rd´1.

Excluding the cost of reporting the output, the runtime of this algorithm is bounded by Tdpnq,

where

T0pnq “ Tdp1q “ 0

Tdpnq ď 2Tdpn{2q ` Td´1pnq ` γn,

for some constant γ P R. Put ε P p0, 1q, and cε “ 2ε{p2ε ´ 1q. We prove by induction that

Tdpnq ď cdεn
1`ε´γn. Clearly, this bound holds for T0pnq and Tdp1q. Assume that the bound holds

for Td1pnq, for all d1 ă d, and for Tdpn1q, for all n1 ă n. Then

Tdpnq ď 2
`

cdεpn{2q1`ε ´ γn{2
˘

`
`

cd´1
ε n1`ε ´ γn

˘

` γn

“
`

cdε{2ε ` cd´1
ε

˘

n1`ε ´ γn

“ p1{2ε ` 1{cεq cdεn1`ε ´ γn

“ cdεn
1`ε ´ γn.

This completes the proof of Lemma 2.2.1.

Fractional Cascading. Fractional cascading was introduced by Chazelle and Guibas [60, 61],

for solving the iterative search problem, defined as follows. Let U be an ordered universe of keys.

Define a catalog as a finite ordered subset of U . Given a set of k catalogs C1, C2, . . . , Ck over U ,

such that |Ci| “ ni for each i P rks, and
řk
i“1 ni “ n, the iterative search problem is to provide a

data structure that supports efficient execution of queries of the form: given a query x P U , return

the largest value less than or equal to x in each of the k catalogs.

Fractional cascading lets one preprocess the catalogs in Opnq time, using Opnq storage, and

answer iterative search queries in Oplogn ` kq time per query, improving upon the naive time

bound Opk lognq. This is essentially optimal in terms of query time, storage size and preprocessing

CHAPTER 2. PRELIMINARIES AND TECHNIQUES 18

time. The idea is to maintain a sufficient number of pointers across catalogs, so that, once we have

the answer ci to a query in a catalog Ci, we can follow a pointer to an element in Ci`1, which is

only Op1q indices away from the answer ci`1 P Ci`1. These pointers are constructed by processing

the catalogs in reverse order, starting from Ck and ending in C1. For i “ k ´ 1, k ´ 2, . . . , 1, we

copy every r-th element of Ci`1 into Ci, where r is some small constant (catalog Ci`1 is already

augmented by copies of elements from higher-indexed catalogs, except catalog Ck). Then, knowing

the location of the query x in some Ci, we can easily retrieve the two copied elements of Ci`1

for which x lies in between, and use this data to limit the search in Ci`1 to only r consecutive

elements.

For our 3SUM decision tree, described in Section 3.6, we develop a specialized fractional cas-

cading data structure, based on an unusual randomized variant of fractional cascading in a grid.

We believe that our technique might be useful for other problems that involve iterative search in

a grid/matrix structure. The detailed description of our technique will be given in Chapter 3.

Chapter 3

3SUM, k-SUM, and

Linear Degeneracy

19

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 20

3.1 Background

The general 3SUM problem is formally defined as

3SUM: Given a finite set A Ă R, determine whether there exist a, b, c P A such that a`b`c “ 0.

An equivalent variant is that the input consists of three finite sets A, B, C Ă R of the same size,

and the goal is to determine whether there are elements a P A, b P B, c P C such that a`b`c “ 0.

When the sets A,B,C are not of the same size, the problem is named unbalanced 3SUM.

The 3SUM problem and its variants are among the most fundamental problems in algorithm

design. Although the 3SUM problem itself does not seem to have many compelling practical

implications, it has been of wide interest due to numerous problems that can be reduced from it.

The notion of 3SUM-Hardness is often used to describe such problems, namely, problems that are

at least as hard as 3SUM. Thus, lower bounds on 3SUM imply lower bounds on dozens of other

problems. Among them are fundamental problems in computational geometry [11, 27, 95, 145],

dynamic graph algorithms [5,122,137], triangle enumeration [6,122], and pattern matching [17,18,

47,64,122,153].

By the time hierarchy theorem [105], there are problems in P with complexity Ωpnkq for every

fixed k. However, given a problem in P, proving an Ωpnkq unconditional lower bound, for any

specific k ą 1, seems far beyond the state of the art in computational complexity theory. This has

led researchers to settle on conditional lower bounds, based on the conjectured hardness of certain

archetypal problems, such as 3SUM, pmin,`q-matrix multiplication, and CNF-SAT. See [4–6, 17,

23,27,38,63,95,113,122,137,138,142,153,156] for many examples of such conditional lower bounds.

In the last decades, starting with a study of Gajentaan and Overmars [95], it was conjectu-

red that any algorithm for 3SUM requires Ωpn2q time. However, a fairly recent breakthrough by

Grønlund and Pettie [104] showed that 3SUM can be solved in subquadratic time. Specifically,

they gave a deterministic algorithm that runs in Opn2plog logn{ lognq2{3q time, and a randomized

algorithm that runs in Opn2plog lognq2{ lognq expected time and with high probability. Further-

more, they showed that there is a 4-linear decision tree for 3SUM with depth Opn3{2?lognq (i.e.,

the depth bounds the number of branching operations, each one is based on a sign test of a li-

near expression with at most 4 terms). These results raised serious doubts on the optimality of

many algorithms for 3SUM-Hard problems. For example, the following problems are known to be

3SUM-Hard.

1. Given an n-point set in R2, determine whether it contains three collinear points (Gajentaan

and Overmars [95]). See Chapter 7 for a discussion on this problem.

2. Given n triangles in R2, determine whether their union contains a hole, or compute the area

of their union [95].

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 21

3. Given two n-point sets X,Y Ă R, each of size n, determine whether all elements in X `Y “

tx` y | x P X, y P Y u are distinct (Barequet and Har-Peled [27]).

4. Given two n-edge convex polygons, determine whether one can be placed inside the other via

translation and rotation [27].

Problems 1 and 2 are solvable in Opn2q time (see [95]). Problems 3 and 4 are solvable in Opn2 lognq

time (see [27]). In face of the new 3SUM result of Grønlund and Pettie [104], it is natural to ask

whether these bounds are optimal. However, no better bounds are currently known (in spite of the

improvement in [104]). Problem 3 (or its stronger variant of sorting X`Y) has special importance,

as it is used for basing the conditional lower bounds for the problems in [27] and in [108]; these

problems are therefore also classified as “(Sorting X ` Y)-Hard”. It is a prominent long-standing

open problem whether Problem 3 can be solved in opn2 lognq time (see [72]). As mentioned

Section 2.2, in a recent breakthrough by Kane, Lovett, and Moran [114] it was showed that the 8-

linear decision tree complexity of Sorting X`Y is only Opn log2 nq, significantly improving (albeit

under a somewhat stronger model) Fredman’s Opn2q 4-linear decision bound from 1976 [92]. Yet,

it is still a prominent open question whether there exists an algorithm that runs faster than the

naive Θpn2 lognq algorithm. Unlike many other problems, even improvements by polylogarithmic

factors are unknown for this problem.

In view of the results in [104], the 3SUM conjecture has been replaced by a relaxed, modern

variant, asserting that 3SUM cannot be solved in strongly subquadratic time (even in expectation),

i.e., in Opn2´εq time, for any ε ą 0. This conjecture is widely accepted and believed by the

computer science community, and so are its implications for deriving conditional lower bounds

for other problems. Abboud and Vassilevska-Williams [6] argue, based on the collective computer

science community efforts, that lower bounds that are based on the relaxed 3SUM conjecture should

be at least as believable as any other known conditional lower bounds for a problem in P.

This relaxed conjecture is often applied to a more restricted variant, Integer3SUM, which is

defined as follows.

Integer3SUM: Given a finite set A Ď t´U, . . . , Uu Ă Z, determine whether there exist a, b, c P

A such that a` b` c “ 0.

Based on the conjecture that Integer3SUM requires Ωpn2´op1qq time, Pǎtraşcu [137] proved lower

bounds on triangle enumeration and on various problems in dynamic data structures. Recently,

the reduction techniques of Pǎtraşcu were extended by Kopelowitz, Pettie, and Porat [122], im-

plying improved lower bounds for this kind of problems. Examples for lower bounds based on this

conjecture include the following:

— Given an undirected m-edge graph, enumerating up to m triangles (3-cycles) requires at least

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 22

Ωpm4{3´op1qq time (Pǎtraşcu [137]).1

— Given a sequence of m updates to a directed graph (edge insertions and deletions) and two

specified vertices s, t, determining whether t is reachable from s after each update, requires

at least Ωpm4{3´op1qq time (Abboud and Williams [5]).

— Given an edge-weighted undirected graph, deciding whether it contains a zero-weight triangle,

requires at least Ωpn3´op1qq time (Williams and Williams [157]).

The Integer3SUM problem is clearly not harder than 3SUM; however, any other relationship

between them is unknown. Unlike 3SUM, Integer3SUM can be solved using fast Fourier transform

in Opn ` U logUq time, which is subquadratic even for a rather large universe size U .2 Baran,

Demaine, and Pǎtraşcu [25] showed that using randomized universe reductions, word packing,

and table lookups, Integer3SUM can be solved in Opn2plog logn{ lognq2q expected time and with

high probability, on the word-RAM, where U “ 2w and w ą logn is the machine word size.

Recently, Chan and Lewenstein [56] showed, based on results from additive combinatorics, strongly

subquadratic time algorithms for special restricted cases of Integer3SUM.

The 3SUM problem was also extensively studied in its generalized forms, k-SUM and k-variate

linear degeneracy testing (k-LDT), formally defined as

k-LDT and k-SUM: Given a k-variate linear function fpx1, . . . , xkq “ α0 `
řk
i“1 αixi, where

α0, . . . , αk P R, and a finite set A Ă R, determine whether there exists px1, . . . , xkq P A
k

such that fpx1, . . . , xkq “ 0. When f is
řk
i“1 xi the problem is called k-SUM(when k “ 3

we get the 3SUM problem we started with).

There are simple algorithms that solve k-LDT in time Opnpk`1q{2q when k is odd, or Opnk{2 lognq

when k is even; see [12]. These algorithms are based on straightforward reductions to a 2SUM

problem or to an unbalanced 3SUM problem, depending on whether k is even or odd, respectively.

These are currently the best known upper bounds for the running time of solving k-LDT. Erick-

son [85] showed that, for an even k, there is a k-linear decision tree with depth Opnk{2q, removing

an Oplognq factor when comparing to the uniform model. Erickson [85] showed that any k-linear

decision tree for solving k-SUM must have depth Ωpnk{2q when k is even and Ωpnpk`1q{2q when k is

odd. In particular, any 3-linear decision tree for 3SUM has depth Ωpn2q. Ailon and Chazelle [12]

showed that any p2k ´ 1q-linear decision tree for k-SUM must have depth Ωpn1`Ωp1qq.

Grønlund and Pettie [104] showed that using only one more variable per comparison leads to a

dramatic improvement in the depth of the tree, which significantly beats the above lower bounds.

Specifically, as will be reviewed below, they showed that there is a 4-linear decision tree for 3SUM

with depth Opn3{2?lognq, and by the reduction from k-LDT to unbalanced 3SUM, they concluded
1By Kopelowitz, Pettie, and Porat [122], the exponent 4{3 is optimal if the matrix multiplication exponent ω is

2 and if 3SUM requires Ωpn2´op1qq time.
2Erickson [85] credits R. Seidel with this Integer3SUM algorithm (taken from [104]).

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 23

that there is a p2k´2q-linear decision tree for k-LDT with depth Opnk{2
?

lognq, for any odd k ě 3.

Cardinal, Iacono, and Ooms [50] showed that if we allow arbitrarily many variables in a comparison

(polynomial in n), then the linear decision tree complexity of k-SUM and k-LDT is Opn3 log3 nq.

This bound was improved by Ezra and Sharir [87] to Opn2 log2 nq.

A recent breakthrough by Kane, Lovett, and Moran [114] significantly improves these results,

giving near optimal bounds by showing a 2k-linear decision tree with depth only Opn log2 nq. Their

decision tree bound is one logarithmic factor away from the well-known Ωpn lognq algebraic decision

tree lower bound of Element-Uniqueness [31], which can be easily reduced to k-SUM. Their usage

of 2k variables is optimal, since for p2k´1q-linear decision tree there is an Ωpn1`Ωp1qq lower bound

by Ailon and Chazelle [12].

Apart from the many lower bounds obtained from the conjectured hardness of 3SUM and its

variants, in recent years, many lower bounds were obtained also from two other plausible conjectu-

res. The first is that computing the pmin,`q–product of two nˆn matrices takes Ωpn3´op1qq time

(aka APSP-Hardness); see for examples [5,6,156]. The second is that CNF-SAT takes Ωp2p1´op1qqnq

time. The latter is often referred to as the Strong Exponential Time Hypothesis (SETH) [110,111].

A natural question is whether any of these conjectures (3SUM, SETH, APSP) are in fact equivalent,

or whether they all derive from a basic unifying hypothesis. At the current state of knowledge,

there is no strong relationship between any pair of these problems, so it may be possible that

any one of them could be true or false, independently of the status of the others. A recent bre-

akthrough by Carmosino et al. [51] provides evidence that such a relationship is unlikely, based on

a nondeterministic variant of SETH; see [51] for details.

3.2 Summary of Our Results and Related Work

The following theorems capture our main results.

Theorem 3.2.1. The randomized 4-linear decision tree complexity of 3SUM is Opn3{2q.

Theorem 3.2.2. The randomized p2k´2q-linear decision tree complexity of k-SUM and of k-LDT

is Opnk{2q, for any odd k ě 3.

Theorem 3.2.3. 3SUM can be solved deterministically in Opn2 log logn{ lognq time.

Theorem 3.2.1 and Theorem 3.2.2 improve (albeit in a randomized setting) the respective

Opn3{2?lognq-depth and Opnk{2
?

lognq-depth decision trees given by Grønlund and Pettie [104].

The aforementioned recent breakthrough by Kane, Lovett, and Moran [114] gives a 6-linear decision

tree for 3SUM with depth Opn log2 nq, and in general, a 2k-linear decision tree for k-SUM, and a

p2k` 2q-linear decision tree for k-LDT, both with depth Opkn log2 nq. Viewing our (and Grønlund

and Pettie’s) k-SUM results for p2k ´ 2q-linear decision tree, with respect to Erickson’s Ωpnrk{2sq

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 24

k-linear decision tree lower bound, and the 2k-linear decision upper bound by Kane, Lovett, and

Moran [114], shows that even adding only 1 or 2 terms to each linear comparison, can significantly

improve the depth of the tree.3

Our technique for proving Theorems 3.2.1 and 3.2.2 includes a specialized data structure, based

on an unusual randomized variant of fractional cascading in a grid.

In Theorem 3.2.3 we give an actual deterministic algorithm for 3SUM that runs (in the uni-

form model) in O
`

n2 log logn{ logn
˘

time. The latter improves the Opn2plog logn{ lognq2{3q-

time bound of Grønlund and Pettie [104], and matches the bound given by a recent independent

work of Freund [94]. Both algorithms, Freund’s and ours, have common high-level ideas, but

ours makes a better use of the word-RAM model, and is hence somewhat simpler. 4 Recently,

Chan [55] further improved this bound by presenting a deterministic algorithm for 3SUM that runs

in O
`

n2plog lognqOp1q{plognq2
˘

time.

3.3 The Quadratic 3SUM Algorithm and Search-Contours

We give a brief overview of the quadratic-time algorithm. We follow the implementation given by

Grønlund and Pettie [104], which is slightly different from the standard approach, but is useful

for the explanation of the results of [104] and of this chapter. For later references, we present

the algorithm for the more general three-set version of 3SUM, as defined in the first paragraph of

Section 3.1.

The algorithm runs over each c P C and searches for ´c in the pairwise sum A ` B. With a

careful implementation, given below, each search takes Op|A|`|B|q time, for a total of Op|C|p|A|`

|B|qq time. We view A ` B as being a matrix whose rows correspond to the elements of A and

columns to the elements of B, both listed in increasing order. To help visualizing some steps of

the algorithms, we think of the rows arranged in increasing order from top to bottom, and of the

columns from left to right.

1. Sort A and B in increasing order as Ap0q, . . . , Ap|A| ´ 1q and Bp0q, . . . , Bp|B| ´ 1q.
2. For each c P C,
2.1. Initialize lo Ð 0 and hi Ð |B| ´ 1.
2.2. Repeat:
2.2.1. If ´c “ Aploq `Bphiq, report witness “pAploq, Bphiq, cq”.
2.2.2. If ´c ą Aploq `Bphiq then increment lo, otherwise decrement hi.
2.3. Until lo “ |A| or hi “ ´1.
3. If no witnesses were found report “no witness.”

3We note that our results have been obtained and published long before the results of Kane, Lovett, and Mo-
ran [114]; see an initial arXiv version of our work in [101].

4The independent result of Freund [94] was brought to our attention after the completion of an initial version
our work; see arXiv version of our work in [101].

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 25

372 389 407 439 454 480 534 609 635 655
397 414 432 464 479 505 559 634 660 680
420 437 455 487 502 528 582 657 683 703
442 459 477 509 524 550 604 679 705 725
478 495 513 545 560 586 640 715 741 761
500 517 535 567 582 608 662 737 763 783
523 540 558 590 605 631 685 760 786 806
548 565 583 615 630 656 710 785 811 831
594 611 629 661 676 702 756 831 857 877
627 644 662 694 709 735 789 864 890 910

Figure 3.3.1: The sky-blue colored entries form contour(710), and the purple colored ones form
contour(558); A shared cell is shown in green. The lighter colors (light purple and light sky-blue)
depict their partial contour, that is, the positions of the contours where we chose to increase the lo
index (“go down”) in the matrix while searching our element. All the elements in the matrix whose
values are in r558, 710q are enclosed between these two contours, excluding the partial contour of 558
and including the partial contour of 710.

The correctness easily follows from the fact that each row and column of A ` B is sorted in

increasing order. Note that when a witness is discovered in Step 2.2.1, the algorithm can stop

right there. However, in order to simplify future definitions and explanations, this implementation

continues to search for more witnesses. After finding a witness we will always choose to decrement

hi. This choice will be made throughout this chapter.

Define the contour of x, contourpx,A`Bq, (contour(x), when the context is clear) to be the

sequence of positions plo,hiq encountered while searching for x in A`B in the preceding algorithm.

Lemma 3.3.1 is straightforward.

Lemma 3.3.1. For x ă y P R, contour(x) lies fully above contour(y); that is, for each

i, i1, j P t0, . . . , n´ 1u, if pi, jq P contourpxq and pi1, jq P contourpyq, then i ď i1.

By Lemma 3.3.1 a pair of contours can overlap, but never cross. Moreover, Lemma 3.3.1 implies

a weak total order relation ă on the contours, which corresponds to the order between the searched

elements, such that x ă y iff contourpxq ă contourpyq, where the latter relation means that

the two contours satisfy the properties stated in the lemma; see Figure 3.3.1.

3.4 Fredman’s Trick, Pairwise Sums, and

Fractional Cascading

We give an overview of the techniques we use in this chapter. This includes techniques from

Fredman’s prominent works from 1976 [92,93], some of which were also discussed in Section 2.2.

For our result, we will develop a special randomized variant of fractional cascading (Chazelle and

Guibas [60, 61]). In this section we also briefly review the standard fractional cascading method,

to set the infrastructure upon which we will later develop our specialized variant.

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 26

Recall Fredman’s trick described in Section 2.2: the trivial observation that a ` b ă a1 ` b1 iff

a´ a1 ă b1 ´ b. We will liberally exploit this observation (trick) throughput this chapter.

Fredman showed that, given n numbers whose sorted order is one of Π ď n! realizable permuta-

tions, they can be sorted using a linear number of comparisons when Π is sufficiently small. More

generally, we have:

Lemma 3.4.1 (Fredman 1976 [92]). A list L of n numbers, whose sorted order is one of Π possible

permutations, can be sorted with 2n` log Π pairwise comparisons.

Sorting Pairwise Sums and its Geometric Interpretation. Fredman describes the relation

between the complexity of hyperplane arrangements and the decision tree complexity of sorting

pairwise sums. Grønlund and Pettie [104] use similar arguments in their 3SUM decision tree, where

they sort pairwise sums. Specifically, given two sets A “ ta1, . . . , anu and B “ tb1, . . . , bnu, each

of n (distinct) real numbers, define the pairwise sum A`B “ tai ` bj | i, j P rnsu. The input A,B

can be regarded as a point p “ pa1, . . . , an, b1, . . . , bnq P R2n. The points in R2n that agree with

a fixed permutation of A ` B form a convex cone bounded by the set H of the
`

n2

2
˘

hyperplanes

xi ` yj ´ xk ´ yl “ 0, for i, j, k, l P rns, pi, jq ‰ pk, lq. The number of possible sorted orders of

A`B is therefore bounded by the number of regions (of all dimensions) in the arrangement ApHq

of H. As shown by Buck [44], the number of regions of dimension k ď d in an arrangement of m

hyperplanes in Rd is at most

ˆ

m

d´ k

˙ˆˆ

m´ d` k

0

˙

`

ˆ

m´ d` k

1

˙

` ¨ ¨ ¨ `

ˆ

m´ d` k

k

˙˙

.

Thus, the number of regions of all dimensions is Opmdq (where the constant of proportionality

is actually independent of d). Hence, the number of possible sorting permutations of A ` B is

O
`

pn4q2n
˘

“ Opn8nq. One can also construct the hyperplane arrangement explicitly in Opmdq

time by a standard incremental algorithm [76]. The following lemma, taken from Grønlund and

Pettie [104], extends this analysis by considering only a subset of these hyperplanes, and is an

immediate consequence of these observations.

Lemma 3.4.2. Let A “ ta1, . . . , anu and B “ tb1, . . . , bnu be two sets, each of n real numbers,

and let F Ď rns2 be a set of positions in the n ˆ n grid. The number of realizable orders of

pA ` Bq|F :“ tai ` bj | pi, jq P F u is O
´

`

|F |
2
˘2n¯

, and therefore pA ` Bq|F can be sorted with at

most 2|F | ` 4n log |F | `Op1q comparisons.

In Lemma 3.4.2, the case F “ rns2 goes back to Fredman [92], who showed that Opn2q compa-

risons suffice to sort A`B.

For some of the algorithms presented and reviewed in this chapter, it is important to assume

that the elements of the pairwise sum are distinct, and therefore have a unique sorting permutation.

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 27

When numbers do appear multiple times, a unique sorting permutation can be obtained by breaking

ties consistently (see [104] for details).

Iterative Search and Fractional Cascading. In our decision tree construction for 3SUM, we

aim to speed-up binary searches of the same number, in many sorted sets. We will use for this task

a special randomized variant of fractional cascading, which will be described in Section 3.6. First,

we briefly recall the standard fractional cascading technique, which was introduced by Chazelle

and Guibas [60, 61] and briefly reviewed in Section 2.2, for solving the iterative search problem,

defined as follows. Let U be an ordered universe of keys. Define a catalog as a finite ordered subset

of U . Given a set of k catalogs C1, C2, . . . , Ck over U , such that |Ci| “ ni for each i P rks, and
řk
i“1 ni “ n, the iterative search problem is to provide a data structure that supports efficient

execution of queries of the form: given a query x P U , return the largest value less than or equal

to x in each of the k catalogs.

Fractional cascading lets one preprocess the catalogs in Opnq time, using Opnq storage, and

answer iterative search queries in Oplogn` kq time per query (as opposed to the trivial Opk lognq

bound). This is essentially optimal in terms of query time, storage size and preprocessing time.

The idea is to maintain a sufficient number of pointers across catalogs, so that, once we have the

answer ci to a query in a catalog Ci, we can follow a pointer to an element in Ci`1, which is only

Op1q indices away from the answer ci`1 P Ci`1.

In order to construct these pointers query time, the fractional cascading method expands each

catalog Ci to an augmented catalog Li, starting with Lk and proceeding backwards down to L1. Lk
is the same as Ck, and for each 1 ď i ă k, Li is formed by merging Ci with every second element5

of Li`1. The items in Ci that were not originally in the catalog are marked as synthetic keys.

From each synthetic key in Ci we add a bridge (pointer) to its copy in Li`1. Using these bridges

and additional pointers, from each real key to the two consecutive synthetic keys nearest to it, one

can follow directly from each element of Li (real or synthetic) to the elements in Li`1 nearest to

it, and by construction, the gap between these elements is 2. Thus, given a query number x, after

spending Oplognq time for searching it in L1, it takes only Op1q time to locate x in each subsequent

catalog, for a total of Oplogn` kq time, as desired. With some additional simple calculations, one

can show that the total number of elements that are copied through the catalogs is only Opnq, and

that the cost of doing it is also Opnq.

Fractional cascading can also be extended to support a collection of catalogs stored at the

vertices of a directed acyclic graph (DAG), and each query searches with some specified element

x through the catalogs stored at the nodes of some specified path in the DAG. In more detail, a

catalog graph is a DAG in which each vertex stores a catalog (ordered list of keys). A query consists
5More generally, every r-th element, for a constant r; the choice of r provides a trade-off between the constants

in the storage and query time.

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 28

of a key x and a path π in the graph, and the goal is to search with x in the catalog of each node

of π. When the maximum in/out degree ∆ of the catalog graph is constant, fractional cascading

can be extended to this scenario, with the same bounds as before (albeit with larger constants of

proportionality). Here too each catalog Cv at a node v, is expanded into an augmented catalog

Lv, and each Lv passes to its predecessors every 2∆-th element (instead of every second element

in the earlier case, where ∆ was 1). See [60, 61] for more details on the construction of the data

structure, proof of correctness, and performance analysis.

In our algorithms we will present a special non-standard variant of this method, that lets us

preserve the advantages of the other techniques (most notably, Fredman’s trick) that we use.

3.5 Grønlund and Pettie’s Subquadratic Decision Tree for

3SUM

In this section we give an overview of the subquadratic decision tree of Grønlund and Pettie [104].

In the following sections we show how their ideas can be extended and combined with additional

techniques, to yield our improved results.

We give an overview of the subquadratic decision tree for 3SUM over a single input set A of

size n, taken from [104], resulting in a 4-linear decision tree with depth Opn3{2?lognq. This is

shown by an algorithm that performs at most Opn3{2?lognq comparisons, where each comparison

is a sign test of a linear expression with at most 4 terms.

1. Sort A in increasing order as Ap0q, . . . , Apn ´ 1q. Partition A into rn{gs groups

A1, . . . , Arn{gs, each of at most g consecutive elements, where g is a parameter that we

will fix later, by setting Ai :“ tAppi´ 1qgq, . . . , Apig ´ 1qu, for each i “ 1, . . . , rn{gs´ 1,

where Arn{gs may be smaller. The first and last elements of Ai are minpAiq “ Appi´1qgq

and maxpAiq “ Apig ´ 1q.
2. Sort D :“

Ť

iPrn{gs pAi ´Aiq “ ta´ a
1 | a, a1 P Ai for some iu.

3. For all i, j P rn{gs, sort Ai,j :“ Ai `Aj “ ta` b | a P Ai and b P Aju.
4. For k from 1 to n,
4.1. Initialize lo Ð 1 and hi Ð rn{gs.
4.2. Repeat:
4.2.1. If ´Apkq P Alo,hi, report “solution found” and halt.
4.2.2. If maxpAloq `minpAhiq ą ´Apkq then decrement hi, otherwise increment lo.
4.3. Until lo “ rn{gs` 1 or hi “ 0.
5. Report “no solution” and halt.

This algorithm can be generalized in a straightforward way to solve the (unbalanced) three-set

version of 3SUM. For the easy argument concerning the correctness of the algorithm, see [104].

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 29

With a proper choice of g, the decision tree complexity of the algorithm is Opn3{2?lognq. Step 1

requires Opn lognq comparisons. By Lemma 3.4.2, Step 2 requires Opn logn`|D|q “ Opn logn`gnq

comparisons to sort D. By Fredman’s trick, if a, a1 P Ai and b, b1 P Aj , a ` b ă a1 ` b1 holds iff

a´ a1 ă b1 ´ b, and both sides of this inequality are elements of D. Thus, Step 3 does not require

any real input comparisons, given the sorted order on D. For each iteration of the outer loop (in

Step 4) there are at most 2rn{gs iterations of the inner loop (Step 4.2), since each iteration ends

by either incrementing lo or decrementing hi. In Step 4.2.1 we can determine whether ´Apkq is in

Alo,hi using binary search, in log |Alo,hi| “ Oplog gq comparisons. The total number of comparisons

is thus Opn logn` gn` pn2 log gq{gq, which becomes Opn3{2?lognq when g “
?
n logn.

3.6 Improved Decision Trees for 3SUM, k-SUM, and k-LDT

In this section we show that the randomized decision tree complexity of 3SUM is Opn3{2q, and more

generally, that the randomized decision tree complexity of k-LDT is Opnk{2q, for any odd k ě 3.

This bound removes the Op
?

lognq factor in Grønlund and Pettie’s decision tree bound (albeit

under a randomized decision tree model). We show this result by giving a randomized algorithm

that constructs a p2k ´ 2q-linear decision tree whose expected depth is Opnk{2q.

To make the presentation more concise, we present it for the variant where we have three

different sets A, B, C of n real numbers each, and we want to determine whether there exist a P A,

b P B, c P C, such that a` b` c “ 0.

As in the previous section, we partition each of the sorted sets A and B into rn{gs blocks, each

consisting of g consecutive elements, denoted by A1, . . . , An{g, and B1, . . . , Bn{g, respectively. As

above, but with a slightly different notation, we consider the nˆn matrix M “MAB , whose rows

(resp., columns) are indexed by the (sorted) elements of A (resp., of B), so that Mpk, `q “ ak` b`,

for k, ` P rns. The partitions of A and of B induce, as before, a partition of M into n2{g2 boxes

Mi,j , for i, j P rn{gs, where Mi,j is the portion of M with rows in Ai and columns in Bj .

Fredman’s trick, combined with Lemma 3.4.2, allows us to sort all the boxes Mi,j with Opngq

comparisons. Since the problem is fully symmetric in A, B, C, we can also define analogous

matrices MAC and MBC , constructed in the same manner for the pairs A, C and B, C, respectively,

partition each of them into n2{g2 boxes, and obtain the sorted orders of all the corresponding boxes,

with Opngq comparisons.

The crucial (costliest) step in Grønlund and Pettie’s algorithm, which we are going to improve,

is the searches of the elements of ´C in MAB . For each c P C, let σpcq “ contourp´cq denote

the staircase path contour of ´c, as defined before Lemma 3.3.1. The length of σpcq is thus at

most 2n. Each of the paths σpcq visits some of the boxes Mi,j , and the index pairs pi, jq of these

boxes also form a staircase pattern, as in the preceding sections. The number of boxes that a

contour σpcq visits is at most 2rn{gs. For each c P C, the sequence of boxes that σpcq visits can be

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 30

obtained by invoking (an appropriate variant of) Step 4 of the algorithm in Section 3.5, excluding

the binary search in Step 4.2.1. The total running time of this step, over all c P C, is Opn2{gq.

The paths σpcq, being contours, have the structure given in Lemma 3.3.1, including the weak

total order ă between them. Thus, we obtain the following.

Corollary 3.6.1. For each box Mi,j, let Ci,j denote the set of elements of C whose paths σpcq

traverse Mi,j. Then Ci,j is a contiguous subsequence of C.

Put κi,j :“ |Ci,j |. Then we clearly have
ř

i,jPrn{gs κi,j “ Opn2{gq. That is, the average number

of elements of C that visit a box is Opgq, and, for each box, these elements form a contiguous

subsequence of C, as just asserted in Corollary 3.6.1. Let C˚i,j denote the contiguous sequence of

indices in C of the elements of Ci,j . That is, Ci,j “ tc` | ` P C˚i,ju. With all these observations,

we next proceed to derive the mechanism by which, for each box Mi,j , we can efficiently search in

Mi,j with the (negations of the) κi,j corresponding elements of Ci,j .

We apply a special variant of fractional cascading. The twist is in the way in which we construct

the augmented catalogs. Note that in each box Mi,j , we have g2 elements of the form ak ` b`,

but only 2g indices k, `. We want to sample elements from a box, and then copy and merge them

into its right and top neighbor boxes. However, in order to be able to use Fredman’s trick, we

have to preserve the property that the number of element-indices (rows and columns) in each box

stays Opgq (unlike a naive implementation of fractional cascading, where it is enough that each

augmented box be of size Opg2q).

Thus, we sample elements from A (row elements) and elements from B (column elements)

separately. We construct augmented sets A11, . . . , A1rn{gs
. Starting with A1

rn{gs
“ Arn{gs, we sample

each element in A1
rn{gs

with probability p “ 1
4 . Each sampled element is copied and merged

with Arn{gs´1, and we denote by A1
rn{gs´1 the new augmented set. Then we sample each element

from A1
rn{gs´1 with the same probability p, copy and merge the sampled elements with Arn{gs´2,

obtaining A1
rn{gs´2, and continue this process until the augmented set A11 is constructed. Similarly,

we construct the augmented sets B11, . . . , B1rn{gs
, but we do it in the opposite direction, starting from

B11 “ B1 and ending with B1
rn{gs

. Clearly, similar to standard fractional cascading, the expected

size of each of the augmented sets is Opgq, as the expected numbers of additional elements placed

in each box form a convergent geometric series. Now we sort

DA1 “
ď

iPrn{gs

`

A1i ´A
1
i

˘

“ ta´ a1 | a, a1 P A1i for some iu.

In each A1i ´ A
1
i, the expected number of elements ak ´ ak1 is Opg2q, and the expected number of

element indices k, k1 is only Opgq. Thus, by Lemma 3.4.2, we can sort DA1 with expected Opngq

comparisons. Similarly, we sort DB1 “
Ť

jPrn{gs

`

B1j ´B
1
j

˘

with the same expected number of

comparisons. Then, we form the union D1 “ DA1 Y DB1 and obtain its sorted order by merging

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 31

DA1 and DB1 . This costs additional expected Opngq comparisons. By Fredman’s trick, from the

sorted order of D1, we can obtain the sorted order of the augmented boxes A1i ` B1j , for each

i, j P rn{gs, without further comparisons (i.e., at no extra cost in our model).

With these augmentations of the row and column blocks, the matrix MAB itself is now aug-

mented, such that each modified box Mi,j “ A1i ` B1j receives some fraction of the rows from the

box Mi`1,j below it, and a fraction of the columns from the box Mi,j´1 to its left. Each box Mi,j

corresponds to a vertex in the catalog graph, and it has (at most) two outgoing edges, one to the

vertex that corresponds to Mi`1,j and one to the vertex that corresponds to Mi,j´1 (it also has at

most two incoming edges). Clearly this is a DAG with maximum in/out degree ∆ “ 2, which is

why we sampled 1
2∆ “ 1

4 of the rows/columns in each step. We complete the construction of this

special fractional cascading data structure, by adding the appropriate pointers, similar to what is

done in a standard implementation of fractional cascading (see Section 3.4). This does not require

any further comparisons (and thus is free of cost in our model), since the pointers from synthetic

keys (the sampled elements) to real keys, and pointers from real keys to synthetic keys, depend

only on the sorted order of the augmented sets Mi,j , which we already computed. So the overall

expected number of comparisons needed to construct this data structure is still Opngq.

Consider now the search with ´c, for some c P C. Assume that the search has just visited

some box Mi1,j1 , and now proceeds to search in box Mi,j . Thus, either pi, jq “ pi1 ` 1, j1q or

pi, jq “ pi1, j1 ´ 1q. Assume, without loss of generality, that pi, jq “ pi1 ` 1, j1q; a symmetric

argument applies when pi, jq “ pi1, j1 ´ 1q, using columns instead of rows. In this case, the

fractional cascading mechanism has sampled, in a random manner, an expected quarter of the

rows of (the already augmented) Mi,j and has sent them to Mi1,j1 “ Mi´1,j . The output of the

search at Mi´1,j , if ´c was not found there, includes two pointers to the largest element ξ´ of Mi,j

that is smaller than ´c, and to the smallest element ξ` of Mi,j that is larger than or equal to ´c.

We need to go over the elements in the sorted order of Mi,j that lie between ξ´ and ξ`, and locate

´c among them. If we do not find it, we get the two consecutive elements that enclose ´c, retrieve

from them two corresponding pointers to a pair of elements in the next box to be searched, that

enclose ´c between them, and continue the fractional cascading search in the next box, in between

these elements.

The main difficulty in this approach is that the number of elements of Mi,j between ξ´ and

ξ` might be large, because there might be many elements between ξ´ and ξ` in rows that we did

not sample, and then we have to inspect them all, slowing down the search.

Concretely, in this case we sample, in expectation, a quarter of the rows of Mi,j (recall that

we actually sample the rows from an augmented box that has already received data from previous

boxes, but let us ignore this issue for now). Collectively, these rows contain (in expectation) Θpg2q

elements of Mi,j , but we have no good control over the size of the gaps of non-sampled elements

between consecutive pairs of sampled ones. This is because there might be rows that we did not

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 32

60 70 80 90 100 110 120 130 140 150
160 170 180 190 200 210 220 230 240 250
260 270 280 290 300 310 320 330 340 350

Figure 3.6.1: An expensive step in the fractional cascading search: Assume that only the first and
third rows (appearing in gray) are sent to the preceding box (above the current one), and that we
search with ´c “ 205. The previous search locates ´c between ξ´ “ 150 and ξ` “ 260, say, and now
we have to examine about half of the entire second row to locate ´c in the current box.

sample which contain many elements between ξ´ and ξ`, and searching through such large gaps

could slow down the procedure considerably. See Figure 3.6.1 for an illustration. (For a normal

fractional cascading, this would not be an issue, but here the peculiar and implicit way in which

we sample elements has the potential for creating this problem.)

We handle this problem as follows. Consider any gap of non-sampled elements of Mi,j between

a consecutive pair ξ´ ă ξ` of sampled ones. We claim that the expected number of rows to which

these elements belong is Op1q. Note that this is why we needed randomization; if we sampled every

4th element in Ai and Bj deterministically then the rows-gap between ξ´ to ξ` could be much

larger, in all boxes Mi,j ; see Figure 3.6.2 for an illustration.

Indeed, the probability to have k distinct rows in such a gap, conditioned on the choice of

the row containing ξ´, is 1
4
` 3

4
˘k, which follows since each row is sampled independently with

probability 1{4. Hence, the (conditionally) expected row-size of a gap is

ÿ

kě0
k

1
4

ˆ

3
4

˙k

“ Op1q,

as claimed. Denote this expected value as β. In other words, for each c P Ci,j , let Rc be the set

of rows that show up in the gap between the corresponding elements ξ´ and ξ` for c. The overall

expected size
ř

cPCi,j
|Rc| is thus β|Ci,j |.

Fix a box Mi,j . For each ` P C˚i,j and for each k P Rc` , we need to locate ´c` among the

elements in row k of Mi,j . That is, we need to locate ´c` among the elements of the set ak `B1j .

This however is equivalent to locating ´ak ´ c` among the elements of B1j .

We therefore collect the set S of all the sums ´ak ´ c`, for ` P C˚i,j and k P Rc` , and recall that

in expectation we have |S| “ Op|Ci,j |q. The crucial observation is that we already (almost) know

the order of these sums. To make this statement more precise, partition, in the usual manner, the

sorted sequence C into rn{gs blocks C1, C2, . . . , Crn{gs, each consisting of g consecutive elements

in the sorted order. As mentioned earlier, a symmetric application of Fredman’s trick allows us to

obtain the sorted order of each box of the form A1i ` Cj , using a total of Opngq comparisons.

The number of (consecutive) blocks Cs of C that overlap Ci,j is ti,j ď rκi,j{gs` 2. Moreover,

each sum in S belongs to ´pA1i`Csq for one of these ti,j blocks. Since each of these sets is already

sorted, we extract from them (with no extra comparisons) the elements of S as the union of ti,j

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 33

-100 -99 ¨ ¨ ¨ -91 67 68 ¨ ¨ ¨ 100
49 50 ¨ ¨ ¨ 58 216 217 ¨ ¨ ¨ 260
50 51 ¨ ¨ ¨ 69 217 218 ¨ ¨ ¨ 261
...

...
...

...
...

...
...

...
90 91 ¨ ¨ ¨ 99 257 258 ¨ ¨ ¨ 291
200 201 ¨ ¨ ¨ 209 367 368 ¨ ¨ ¨ 400

Figure 3.6.2: Example of a 44 ˆ 44 box with sorted rows and columns, which is the sumset matrix
of the ordered sets t0, 149, 150, . . . , 190, 300u and t´100,´99, . . . ,´91, 67, 68, . . . , 100u. Say that we
searched for element 150 in the previous box, which is augmented by every 4th row of this box. Since
elements 100 and 200 are consecutive in this box, the fractional cascading mechanism locates element
150 between ξ´ “ 100 and ξ` “ 200, which sit in the first and last rows of this box (in grey color),
respectively. A similar scenario can appear in all the gˆ g boxes, and for any choice of g, if we sample
rows (resp., columns) deterministically. Hence, we needed randomization, in order to obtain that the
rows-gap (resp., columns-gap) between ξ´ and ξ` is Op1q in expectation.

sorted sequences Si,s, where Si,s Ă ´pA1i ` Csq for each s. Arguing as above, the expected size of

Si,s is β|Cs| “ Opgq. We now merge each of the sorted sequences Si,s with B1j , using an expected

Opgq comparisons for each merge. As a result, each sum ´ai´c` is located between two consecutive

elements b´i,` ă b`i,` of B1j . In other words, for each c` P Ci,j , we have at most |Rc` | candidates

for being the largest element of Mi,j that is smaller than ´c` (these are the elements ai ` b´i,`, for

i P Rc`), and we select the largest of them, requiring no comparisons, as these are all elements of

the already sorted A1i`B1j . In the same manner, we find the smallest element of Mi,j that is larger

than ´c`. Having found these two elements, we can proceed to search ´c` in the next box, using

the appropriate pointers created by the fractional cascading mechanism (see Section 3.4).

The overall number of merges is

ÿ

i,jPrn{gs

ti,j ď
ÿ

i,jPrn{gs

pκi,j{g ` 2q “ Opn2{g2q,

and each of them costs Opgq expected comparisons, for a total of Opn2{gq expected comparisons.

Thus, the overall number of expected comparisons is Opng ` nplog g ` n{gqq, which is Opn3{2q,

when g “
?
n. This completes the proof of Theorem 3.2.1.

k-SUM and k-LDT

The standard algorithm for k-variate linear degeneracy testing (k-LDT) for odd k ě 3, is based on

a straightforward reduction to an instance of unbalanced 3SUM, where |A| “ |B| “ npk´1q{2 and

|C| “ n; see [12] and [104]. The analysis of this section also applies for unbalanced 3SUM, and

directly implies that it can be solved by using an expected number of

O pg p|A| ` |B| ` |C|q ` |C| pp|A| ` |B|q{g ` log gqq

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 34

comparisons, where the first term is the cost of sorting the blocks of (the augmented) MAB , MAC ,

and MBC , and where the second term is the cost of the fractional cascading searches. We have

|A| “ |B| “ npk´1q{2, |C| “ n, so by choosing g “
?
n, the bound becomes Opnk{2q. Thus, the

randomized decision tree complexity of k-LDT (and thus of k-SUM) is Opnk{2q, for any odd k ě 3,

as stated in Theorem 3.2.2.

3.7 Subquadratic Algorithms for 3SUM

In this section we use the technique of Chan [53] for dominance reporting, described in Section 2.2.

We remind that Chan was the first to show the idea of combining dominance reporting with

Fredman’s trick, for improving polylogarithmic factors, where the problem he applied it on was

the general version of the famous all-pairs-shortest-paths (APSP) problem. This mechanism was

later extended by Bremner et al. [37] and used to show mildly subquadratic algorithms for various

problems, such as pmin,`q-Convolution, and restricted variants of sorting X`Y and 3SUM. Later,

Grønlund and Pettie [104] used similar techniques to give the first mildly subquadratic algorithm

for the general 3SUM problem, as mentioned earlier.

Recall the following bichromatic dominance reporting result of Chan [53], described in

Section 2.2.

Lemma 3.7.1 (Chan [53]). Given a finite set P “ tp1, . . . , pnu of points in Rd, each is colored

red or blue, one can report all pairs pi, jq P rns2, such that pi is red, pj is blue, and pirks ą pjrks,

for every k P rds, in time Opcdε |P |1`ε `Kq, where K is the output size, ε P p0, 1q is an arbitrary

prespecified parameter, and cε “ 2ε{p2ε ´ 1q.

Throughout this section, we invoke Lemma 3.7.1 a large number of times, with ε “ 1{2, cε «

3.42, and d “ δ logn, where δ ą 0 is sufficiently small to make the overall running time of all the

invocations dominated by the total output size; see below for details.

Grønlund and Pettie [104] present two subquadratic algorithms for 3SUM, one is relatively

simple, and the second one has slightly faster runtime but is more involved. Both algorithms are

based on the decision tree algorithm described in Section 3.5, except that they use a much smaller

value of g, in order to make the overall running time subquadratic. We give here a brief overview

of the simpler algorithm. Their second algorithm has some common high-level features with our

algorithm, presented in the next section, but our algorithm processes the data in a different,

simpler, and more efficient manner.

Note that, sorting the set D in of Grønlund and Pettie’s decision tree that is presented in

Section 3.5 lets one obtain a comparison-efficient way to sort each of Ai,j . However, the actual

running time is even more than quadratic, when all operations are considered. When the boxes

Ai,j are small enough, Grønlund and Pettie showed that it is possible to obtain the sorted orders

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 35

in each of the pn{gq2 boxes, in (all inclusive) mildly subquadratic time.

Specifically, the algorithm enumerates every permutation π : rg2s Ñ rgs2, where π “ pπr, πcq is

decomposed into row and column functions πr, πc : rg2s Ñ rgs, so that πpkq “ pπrpkq, πcpkqq, for

each k P rg2s. By definition, π is the correct sorting permutation for the box Ai,j iff Ai,jpπptqq ă

Ai,jpπpt` 1qq for all t P rg2 ´ 1s. Since Ai,j “ Ai `Aj this inequality can also be written

Aipπrptqq `Ajpπcptqq ă Aipπrpt` 1qq `Ajpπcpt` 1qq.

By Fredman’s trick this is equivalent to saying that the (red) point pj dominates the (blue) point

qi, where

pj “
`

Ajpπcp2qq ´Ajpπcp1qq, . . . , Ajpπcpg
2qq ´Ajpπcpg

2 ´ 1qq
˘

qi “
`

Aipπrp1qq ´Aipπrp2qq, . . . , Aipπrpg
2 ´ 1qq ´Aipπrpg

2qq
˘

.

Invoking pg2q! times the bichromatic dominance reporting algorithm from Lemma 3.7.1, we

find, for each π, all such dominating pairs, that is, all boxes Ai,j sorted by π. Note that, for each

pair of indices j, i, there is exactly one invocation of the dominating pairs procedure in which the

corresponding points pj and qi are such that pj dominates qi; this follows because we assume that

all elements of Ai,j are distinct (see a previous remark concerning this issue). This is important

in order to keep the overall output size subquadratic.

By Lemma 3.7.1 and the remarks just made, the time to report all red/blue dominating pairs,

over all pg2q! invocations of the procedure, is O
´

pg2q!cg2
´1

ε p2n{gq1`ε ` pn{gq2
¯

, where the last term

is the total size of the outputs (one for each box Ai,j). For ε “ 1{2 and g “ 1
2
a

logn{ log logn, the

first term turns out to be negligible. The total running time is therefore Oppn{gq2q for dominance

reporting, and Opn2 log g{gq “ O
`

n2plog lognq3{2{plognq1{2
˘

for the binary searches in Steps 4.1–

4.3. By Lemma 3.4.2 and Fredman [92], there are at most Opg8gq realizable permutations of Ai,j
(which is much smaller than pg2q!). Hence, this algorithm can be slightly improved to run in

O
`

n2 log logn{
?

logn
˘

time, by constructing the arrangement of the hyperplanes (as defined in

Section 3.4) explicitly, extracting from it the relevant permutations, and choosing g “ Θp
?

lognq.

3.8 Improved Deterministic Subquadratic 3SUM Algorithm

In the algorithm of Grønlund and Pettie, described above, the boxes Ai,j are sorted by using

Fredman’s trick to transform each permutation into a sequence of g2 ´ 1 comparisons, which are

then resolved by the bichromatic dominance reporting algorithm. Consequently, the space into

which these sequences are encoded is of dimension g2 ´ 1, thus having the cg
2
´1

ε factor in the

running time of the bichromatic dominance reporting algorithm forced us to use g “ Θp
?

lognq.

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 36

In order to use a larger value of g, we want to reduce the dimension of the points. Thus, we want

to find a method to sort smaller sets, while still be able to do the binary searches in each box in

Oplog gq time.

Fix some k P rg2s, and let pl,mq P rgs2 be a point in the g ˆ g grid, such that Ai,jpl,mq is the

k-th smallest element in the box Ai,j . Let τ “ pτr, τcq denote contourpAi,jpl,mqq, and enumerate

its elements as τp1q, τp2q, Recall that, if τpt` 1q “ τptq ` p0,´1q then Ai,jpl,mq ď Ai,jpτptqq,

otherwise, if τpt` 1q “ τptq ` p1, 0q then Ai,jpl,mq ą Ai,jpτptqq. The contour starting position is

pτrp0q, τcp0qq “ p1, gq, and it ends at the first t˚ for which τpt˚q “ pg`1, ¨q or τpt˚q “ p¨, 0q. Recall

that a pair of contours contour(x) and contour(y) in Ai,j may overlap, but can never cross;

see Lemma 3.3.1.

Let τ 1pAi,jpl,mqq “ pτ 1p0q, τ 1p1q, . . . , τ 1ptτ 1qq Ď τ “ contourpAi,jpl,mqq be the partial contour

of τ , defined as the subsequence of positions of τ at which we chose to go down (i.e., increment lo

in the quadratic algorithm). The sequence τ 1pAi,jpl,mqq is of length at most g, since it contains

at most one element of each row (at which we go down, by incrementing lo); see Figure 3.3.1.

Since the rows of Ai,j are sorted, each position pa, bq P τ 1pAi,jpl,mqq satisfies

Ai,jpa, b
1q ă Ai,jpl,mq for every b1 ď b. (3.1)

Ai,jpa, b
2q ě Ai,jpl,mq for every b2 ą b. (3.2)

Thus, τ 1pAi,jpl,mqq partitions Ai,j into two sets: Api,jqL Ă p´8, Ai,jpl,mqq consists of the elements

at positions in tpa, b1q | pa, bq P τ 1pAi,jpl,mqq and b1 ď bu, and Api,jqR Ă rAi,jpl,mq,8q consists

of the elements at positions in tpa, b2q | pa, bq P τ 1pAi,jpl,mqq and b2 ą bu. Rows succeeding the

last row of τ 1pAi,jpl,mqq are fully contained in Api,jqR. By construction, Api,jqL is the set of all

elements in Ai,j that are smaller than the k–th smallest element Ai,jpl,mq, so the considerations

just made, provide the structure of this set. See Figure 3.3.1 for an illustration.

Each partial contour τ 1 is thus a sequence of positions in Ai,j such that (i) the rows containing

these positions form a contiguous subsequence, starting from the first row of Ai,j , (ii) each row in

this subsequence has exactly one entry of τ 1, and (iii) the sequence of columns of the entries of

τ 1 is weakly monotone decreasing: if pa, bq and pa ` 1, b1q are in τ 1 then b1 ď b. Any sequence τ 1

that satisfies properties (i)–(iii) is called a valid partial contour. Note that a valid partial contour

depends only on the positions of the contour in the box Ai,j , and not on the actual values of the

entries of Ai,j .

Let µ1 be some valid partial contour, as just defined, over a rgs ˆ rgs position set, such that

the sum of the column indices of positions in µ1 is exactly k. Write µ1 “ pµ1r, µ
1
cq, as was done

for permutations above, so that µ1r gives the row indices of the elements of µ1, and µ1c gives their

column indices. Denote by t1 ď g the number of positions in µ1.

For given indices `,m, we can determine, using (3.1) and (3.2), whether µ1 “ τ 1pAi,jpl,mqq,

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 37

by testing, for each t P rt1s, whether Ai,jpµ1ptqq ă Ai,jpl,mq and Ai,jpµ
1ptq ` p0, 1qq ą Ai,jpl,mq,

except for the t0 for which Ai,jpµpt0qq “ Ai,jpl,mq, since then the second inequality becomes an

equality; this takes at most 2t1 ´ 2 comparisons. By Fredman’s trick, and since Ai,j “ Ai ` Aj ,

this can be restated, that µ1 “ τ 1pAi,jpl,mqq iff the (red) point pj dominates the (blue) point qi,

where

pj “
`

. . . , Ajpmq ´Ajpµ
1
cptqq, Ajpµ

1
cpt` p0, 1qq ´Ajpmqq, . . .

˘

(3.3)

qi “
`

. . . , Aipµ
1
rptqq ´Aiplq, Aiplq ´Aipµ

1
rptqq, . . .

˘

,

where the 2t1 ´ 2 coordinates are indexed in pairs by t P rt1s ´ tt0u.

We regard each box Ai,j as being partitioned into h “ g log g sets Api,jq1, . . . , Api,jqh, each of

size at most s “ g{ log g, such that for k P rhs, Api,jqk is the set of all elements that are at least

the pk ´ 1qs–smallest element, and smaller than the ks–smallest element in Ai,j . Our goal is to

compute, for each box Ai,j , the positions of the elements of the sets Api,jq1, . . . , Api,jqh, and the

correct sorting permutation of each of them, as well as to determine, for each k P rhs, the position

of the ks–smallest element in Ai,j .

Fix k P rhs. We enumerate all the pairs of realizable valid partial contours µ1
pk´1qs, µ

1
ks, such

that (i) µ1
pk´1qs lies to the left and above µ1ks, and (ii) the sums of the column indices of their entries

are pk ´ 1qs and ks, respectively. Let Sk be the set of positions enclosed between the two partial

contours µ1
pk´1qs and µ1ks, excluding µ1

pk´1qs and including µ1ks. For each Ai,j , we want to identify

the pair pµ1
pk´1qs, µ

1
ksq, for which µ1

pk´1qs and µ1ks are the partial contours of the pk ´ 1qs-smallest

and the ks-smallest elements of Ai,j , respectively. Thus Sk is the set of the s positions of the

elements of Ai,j that are larger or equal to the pk ´ 1qs-smallest element and smaller than the

ks-smallest element. These are the positions of the set Api,jqk. See Figure 3.3.1 for an illustration.

It is easily seen that there are at most 24g pairs of sequences pµ1
pk´1qs, µ

1
ksq, and there is only

one unique pair of valid partial contours pµ1
pk´1qs, µ

1
ksq that satisfy all the above requirements

for a specific box Ai,j , as there is only one pk ´ 1qs–smallest element and only one ks–smallest

element in Ai,j (assuming, as above, that all the elements of Ai,j are distinct). We enumerate all

pairs of positions P1, P2 P rgs
2, such that P1 P µpk´1qs and P2 P µks (recall that µ1 is a partial

contour of some contour µ, where µ is uniquely determined from µ1, see Figure 3.3.1). There are

at most p2gq2 “ 4g2 such positions. We also enumerate every realizable permutation π : rss Ñ Sk

of the elements at positions in Sk (where, for each Ai,j , we want to identify the permutation that

sorts its elements at the positions of Sk). The number of permutations is bounded trivially by

s! “ pg{ log gq!.

We now extend the points defined in (3.3), to make them encode additional information, as

follows. For every tuple pP1, P2, µ
1
pk´1qs, µ

1
ks, πq, we create red points tpjujPrn{gs and blue points

tqiuiPrn{gs in R4pt1´1q`s´1, such that a red point pj dominates a blue point qi iff the following

CHAPTER 3. 3SUM, K-SUM, AND LINEAR DEGENERACY 38

conditions hold. (i) µ1
pk´1qs “ τ 1pAi,jpP1qq, (ii) µ1ks “ τ 1pAi,jpP2qq, and (iii) π is the unique sorting

permutation of the portion of Ai,j with indices in Sk. The first 4t1 ´ 4 coordinates encode the

correctness of µ1
pk´1qs and µ1ks (as in (3.3), using the positions P1, P2 as those defining the respective

contours), and the last s ´ 1 coordinates encode the correctness of π, as in Section 3.7 but for a

permutation of size at most s “ g{ log g. We do this h “ g log g times, for each k P rhs.

According to Lemma 3.7.1, the overall time to report all bichromatic dominating pairs is

O
´

h ¨ 24gg2s!c4pg´1q`s´1
ε pn{gq1`ε ` hpn{gq2

¯

.

The second term is the output size, because for each of the pn{gq2 boxes Ai,j , there will be exactly

h dominating pairs, one for each pair of consecutive partial contours, as above. By fixing ε “ 1{2

and g “ d logn with a small enough d, the first term will be negligible and the runtime will be

dominated by the output size Ophpn{gq2q “ Opn2 log g{gq “ Opn2 log logn{ lognq.

We can now search an element x in a box Ai,j , in Oplog gq time. We first do a binary search,

in Oplog gq time, over the h positions storing the ks–smallest element of Ai,j , for k P rhs (we

have already computed their positions, and, by definition, they are already sorted). This will give

us a single set Api,jqk that can possibly contain x. Then we do another binary search in Api,jqk,

also in Oplog gq time, as we already found its sorting permutation earlier. (Note that each such

permutation π is of length at most g{ log g, and of values from rgs2. Thus, by our earlier choice

of g, π can be stored in a machine word of size Oplognq, and be accessed in Op1q time.) Each

element ´Apkq is being searched in at most 2rn{gs boxes (as in Steps 4.1–4.3 of Grønlund and

Pettie’s decision tree, described in Section 3.5). Hence, the total running time of the algorithm is

Opn2 log g{gq “ Opn2 log logn{ lognq deterministic time. This proves Theorem 3.2.3.

Chapter 4

Geometric Pattern Matching

Algorithms

39

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 40

4.1 Dynamic Time Warping and Geometric Edit Distance

Dynamic Time Warping (DTW) and Geometric Edit Distance (GED) are basic similarity measures

between curves or general temporal sequences (e.g., time series) that are represented as sequences

of points in some metric space pX, distq. The DTW and GED measures are massively used in

various fields of computer science and computational biology. Consequently, the tasks of computing

these measures are among the core problems in P. Despite extensive efforts to find more efficient

algorithms, the best-known algorithms for computing the DTW or GED between two sequences

of points in X “ Rd are long-standing dynamic programming algorithms that require quadratic

runtime, even for the one-dimensional case d “ 1, which is perhaps one of the most used in practice.

In this chapter, we present deterministic algorithms that run in O
`

n2{ log logn
˘

time, for

computing DTW or GED between two sequences of n points in R. This result breaks the nearly

50 years old quadratic time bound for this problems. Our algorithms can be extended to work also

for higher dimensional spaces Rd, for any constant d, when the underlying distance-metric dist is

polyhedral (e.g., L1, L8).

4.1.1 Problem Statements

Let A “ pp1, . . . , pnq and B “ pq1, . . . , qmq be two sequences of points (also referred to as curves) in

some metric space pX, distq. A coupling C “ pc1, . . . , ckq between A and B is an ordered sequence

of distinct pairs of points from AˆB, such that c1 “ pp1, q1q, ck “ ppn, qmq, and

cr “ ppi, qjq ñ cr`1 P

ppi`1, qjq, ppi, qj`1q, ppi`1, qj`1q
(

,

for r ă k. The DTW-distance between A and B is

dtwpA,Bq “ min
C: coupling

"

ÿ

ppi,qjqPC

distppi, qjq
*

. (4.1)

A coupling C for which the above sum is minimized is called an optimal coupling. The DTW

problem is to compute dtwpA,Bq, and sometimes also an optimal coupling C.

A monotone matching M “ tm1, . . . ,mku between A and B is a set of pairs of points from

AˆB, such that any two pairs ppi, qjq, ppi1 , qj1q PM satisfy that i ă i1 iff j ă j1. This also implies

that each point in A is matched with at most one point in B and vice versa (possibly some points

in AYB do not appear in any pair of the matching); see Figure 4.1.1 for an illustration. Note the

difference from coupling (defined above), which covers all points of AYB and a point can appear

in multiple pairs of the coupling. The cost of M is defined to be the sum of all the distances

between the points of each pair inM, plus a gap penalty parameter ρ P R, for each point in AYB

that does not appear in any pair of M.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 41

p1

p2

p3

p4

p5

p6

p7

q1

q2

q3

q4

q5

q6

q7

Figure 4.1.1: Example of a monotone matching (in blue) between two polygonal curves (represented
by point-sequences) in the plane.

The Geometric Edit Distance (GED) between A and B is

gedpA,Bq “ min
M

"

´

ÿ

ppi,qjqPM

distppi, qjq
¯

` ρ pn`m´ 2|M|q
*

, (4.2)

where the minimum is taken over all sets of monotone matchingsM in the complete bipartite graph

AˆB. A monotone matching M for which the above sum is minimized is called an optimal mat-

ching. The GED problem is to compute gedpA,Bq, and sometimes also an optimal matching. More

sophisticated gap penalty functions have been proposed [75], but for this presentation, we focus on

the standard linear gap penalty function, although our presented algorithm supports more complex

gap penalty, such as taking ρ to be a linear function in the coordinates of the points of A Y B.

By tuning ρ correctly, meaningful matchings can be computed even when faced with outlier points

that arise from measurement errors or short deviations in otherwise similar trajectories.

The DTW-distance and GED are massively used in dozens of applications, such as speech

recognition, geometric shape matching, DNA and protein sequences, protein backbones, matching

of time series data, GPS, video and touch screen authentication trajectories, music signals, and

countless data mining applications; see [48,71,77,118–120,132,140,151] for some examples.

The best-known worst-case running times for solving DTW or GED are given by long-standing

simple dynamic programming algorithms that require Θpnmq time. We review the standard

quadratic-time DTW and GED algorithms in Section 4.2 and 4.4, respectively.

DTW was perhaps first introduced as a speech discrimination method [150] back in the 1960’s.

GED is a natural extension of the well-known string version of Edit Distance, however, the

subquadratic-time algorithms for the string version do not seem to extend to GED (see below).

A popular setting in both theory and practice is the one-dimensional case X “ R (under the

standard Euclidean distance distpx, yq “ |x´ y|). Even for this special case, no subquadratic-time

algorithms have been known. We consider this case throughout most of the chapter.

4.1.2 Summary of Our Results and Related Works

Prior Results. Since no subquadratic-time algorithm is known for computing DTW, a number

of heuristics were designed to speed up its exact computation in practice; see Wang et al. [152] for

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 42

a survey. Very recently, Agarwal et al. [8] gave a near-linear approximation scheme for computing

DTW or GED for a restricted, although quite large, family of curves.

Recently, Bringmann and Künnemann [39] proved that DTW on one-dimensional point sequen-

ces whose elements are taken from t0, 1, 2, 4, 8u Ă R has no Opn2´Ωp1qq-time algorithm, unless

SETH fails. They proved a similar hardness result also for Edit Distance between two binary

strings, improving the conditional lower bound of Backurs and Indyk [23]. This line of work was

extended in a very recent work by Abboud et al. [3], and Abboud and Bringmann [2], where they

show that even a sufficiently large polylogpnq-factor improvement over the quadratic-time upper

bound of similar quadratic matching problems, may lead to major consequences, such as faster

Formula-SAT algorithms, and new circuit complexity lower bounds.

Masek and Paterson [128] showed that Edit Distance between two strings of length at most n

over an Op1q-size alphabet can be solved in Opn2{ lognq time. More recent works [34,103] managed

to lift the demand for Op1q-size alphabet and retain a subquadratic-time bound by making a better

use of the word-RAM model. However, these works do not seem to extend to GED, especially not

when taking sequences of points with arbitrary real coordinates. In the string version, the cost of

replacing a character is fixed (usually 1), hence, we only need to detect that two characters are

not identical in order to compute the replacement cost, unlike in GED, where the analogous cost

for two matched points is taken to be their distance, under some metric.

Our Results and Related Works. Efforts for breaking the quadratic time barrier for basic

similarity measures between curves and point-sequences were recently stimulated by the result of

Agarwal et al. [7] who showed that the discrete Fréchet distance can be computed in Opn2{ lognq

time. Their algorithm for (discrete) Fréchet distance does not extend to DTW or GED, as the

formula for the (discrete) Fréchet distance uses the max function over distances between pairs of

points, while the formulas for DTW and GED involve their sum. As a result, the Fréchet distance

is effectively determined by a single pair of sequence elements, which fits well into the use of the

Four-Russians technique [20], while the DTW and GED are determined by many pairs of elements.

This makes our algorithms much more subtle, involving a combination and extension of techniques

from computational geometry and graph shortest paths.

To simplify the presentation, we present our results only for the “balanced” case m “ n;

extending them to the general case m ď n is easy. The standard Θpmnq-time algorithm is superior

to our solution only when m is subpolynomial in n.

Our results are stated in the following theorems.

Theorem 4.1.1. Given two sequences A “ pp1, . . . , pnq and B “ pq1, . . . , qnq, each of n points

in R, the DTW-distance dtwpA,Bq (and optimal coupling), or the GED gedpA,Bq (and optimal

matching) can be computed by a deterministic algorithm in Opn2{ log lognq time.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 43

Theorem 4.1.1 gives the very first subquadratic-time algorithm for solving DTW, breaking the

nearly 50 years old Θpn2q time bound [150]. We present the improved algorithm for DTW in

Section 4.3. In Section 4.3.1 we extend our algorithm to give a more general result, which supports

high-dimensional polyhedral metric spaces, as stated in Theorem 4.1.2 given below. In Section 4.4

we extend our algorithm to obtain a subquadratic solution for GED.

Theorem 4.1.2. Let A “ pp1, . . . , pnq and B “ pq1, . . . , qnq be two sequences of n points in

Rd, where d is a constant and the underlying distance-metric is polyhedral1. Then dtwpA,Bq

(and optimal coupling), or gedpA,Bq (and optimal matching) can be computed by a deterministic

algorithm in Opn2{ log lognq time.

4.2 Preliminaries, Tools, and the Quadratic Time DTW

Algorithm

Throughout this chapter, unlike Chapter 3, we view matrices with rows indexed in increasing order

from bottom to top and columns indexed in increasing order from left to right, so for example,

M r0, 0s corresponds to the value of the leftmost-bottom cell of a matrix M .

In our algorithm, we will often use the following extension of Fredman’s trick (see also

Section 2.2).

a1 ´ b1 ` ¨ ¨ ¨ ` ar ´ br ă a11 ´ b
1
1 ` ¨ ¨ ¨ ` a

1
t ´ b

1
t

if and only if

a1 ` ¨ ¨ ¨ ` ar ´ a
1
1 ´ ¨ ¨ ¨ ´ a

1
t ă b1 ` ¨ ¨ ¨ ` br ´ b

1
1 ´ ¨ ¨ ¨ ´ b

1
t.

(4.3)

As in Chapter 3, our algorithm uses Chan’s geometric domination technique, summarized in

Section 2.2 and in Lemma 2.2.1. We repeat below the statement of the lemma, for the conve-

nience of the reader.

Lemma 4.2.1 (Chan [53]). Given a finite set P “ tp1, . . . , pnu of points in Rd such that each

point is colored red or blue, one can report all pairs pi, jq P rns2, such that pi is red, pj is blue, and

pirks ą pjrks for every k P rds, in time Opcdε |P |1`ε `Kq, where K is the output size, ε P p0, 1q is

an arbitrary prespecified parameter, and cε “ 2ε{p2ε ´ 1q.

The Quadratic Time DTW Algorithm

We give an overview of the standard dynamic programming algorithm for computing the DTW-

distance between two sequences of n points in R, which requires quadratic time [150]. This algo-
1That is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope with Op1q

facets (e.g., L1, L8).

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 44

rithm can be easily extended to return also the optimal coupling (see below). In Section 4.4 we

overview a “similar in principle” algorithm for solving GED.

We are given as input two sequences A “ pp1, . . . , pnq and B “ pq1, . . . , qnq of n points in R.

(The algorithm below can be (trivially) modified to handle sequences of different lengths.)

1. Initialize an pn` 1q ˆ pn` 1q matrix M and set M r0, 0s :“ 0.
2. For each ` P rns

2.1. M r`, 0s :“ 8, M r0, `s :“ 8.
3. For each ` P rns,
3.1. For each m P rns,
3.1.1 M r`,ms :“

ˇ

ˇp` ´ qm
ˇ

ˇ`min
!

M r`´ 1,ms, M r`,m´ 1s, M r`´ 1,m´ 1s
)

.
4. Return M rn, ns.

The optimal coupling itself can also be retrieved, at no extra asymptotic cost, by the standard

technique of maintaining pointers from each p`,mq to the preceding position

p`1,m1q P tp`´ 1,mq, p`,m´ 1q, p`´ 1,m´ 1qu

through which M r`,ms is minimized. Tracing these pointers backwards from pn, nq to p0, 0q and

reversing these links yields the desired optimal coupling.

4.3 Dynamic Time Warping in Subquadratic Time

As above, the input consists of two sequences A “ pp1, . . . , pnq and B “ pq1, . . . , qnq of n points

in R. Our algorithm can easily be modified to handle the case where A and B have different

lengths.

Preparations

We fix some (small) parameter g, whose value will be specified later; for simplicity, we assume that
n
g´1 is an integer. We decompose A and B into s “ n

g´1 subsequences A1, . . . , As, and B1, . . . , Bs,

such that for each i, j P t2, . . . , su, each of Ai and Bj consists of g ´ 1 consecutive elements of

the corresponding sequence, prefixed by the last element of the preceding subsequence. We have

that A1 and B1 are both of size g ´ 1, each Ai and Bj is of size g, for i, j P t2, . . . , su, and each

consecutive pair Ai, Ai`1 or Bj , Bj`1 have one common element.

For each i, j P rss, denote by Di,j the all-pairs-distances matrix between points from Ai and

points from Bj ; specifically, Di,j is a g ˆ g matrix (aka a box, see below for the cases i “ 1 or

j “ 1) such that for every `,m P rgs,

Di,jr`,ms “
ˇ

ˇAip`q ´Bjpmq
ˇ

ˇ.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 45

For all i P rss, we add a leftmost column with 8 values to each box Di,1, and similarly, we add

a bottommost row with 8 values to each box D1,i. In particular, D1,1 is augmented by both a

new leftmost column and a new bottommost row. The common element D1,1r0, 0s of this row and

column is set to 0. Overall, we have s2 “
´

n
g´1

¯2
boxes Di,j , all of size g ˆ g.

We define a staircase path P on a g ˆ g matrix Di,j as a sequence of positions from rgs ˆ rgs

that form a monotone staircase structure, starting from a cell on the left or bottom boundary and

ending at the right or top boundary, so that each subsequent position is immediately either to

the right, above, or above-right of the previous one. Formally, by enumerating the path positions

as P p0q, . . . , P pt˚q, we have P pt ` 1q P tP ptq ` p0, 1q, P ptq ` p1, 0q, P ptq ` p1, 1qu, for each t P

t0, . . . , t˚ ´ 1u. The path starts at some point P p0q “ p¨, 1q or p1, ¨q, and ends at some t˚ (not

necessarily the first such index) for which P pt˚q “ p¨, gq or pg, ¨q. Note that t˚ can have any value

in r2g ´ 2s. The number of possible monotone staircase paths in a box Di,j is trivially bounded

by Opg232g´2q, and the following more careful reasoning improves this bound to Op32gq. Each

staircase path can be encoded by its first position, followed by its sequence of moves, where each

move is in one of the directions up/right/up-right. Thus, the number of staircase paths that start

at some position pr, 1q (resp. p1, rq) at the left (resp. bottom) boundary is bounded by 32g´1´r.

Thus, the total number of staircase paths that start at the left or the bottom boundary is bounded

by

2
g
ÿ

r“1
32g´1´r “ Op32gq.

We define the cost of a staircase path P in a box Di,j by

costi,jpP q “
t˚
ÿ

t“1
Di,jpP ptqq.

(For technical reasons, that will become clear in the sequel, we generally do not include the first

position P p0q of the path in evaluating its cost, except in the boxes Di,1 and D1,j for all i, j P rss.)

To ease the presentation, in the algorithm that follows, we assume (or ensure) that no two distinct

paths in a box Di,j have the same cost. This will be the case if we assume that the input sequences

are in sufficiently general position. In Section 4.3.2 we will show how this assumption can be

completely removed, by adding a few additional steps to the preprocessing stage of the algorithm,

without increasing its asymptotic time bound.

We denote by L the set of positions in the left and bottom boundaries of any box Di,j , and

by R the set of positions in the right and top boundaries (note that L and R have two common

positions). Given a starting position v P L, and an ending position w P R, we denote by Spv, wq

the set of all staircase paths Pv,w that start at v and end at w (if there is no staircase path between

v and w, then Spv, wq “ H). We say that P˚v,w P Spv, wq is the shortest path between v and w in

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 46

Di,j iff

costi,j
`

P˚v,w
˘

“ min
Pv,wPSpv,wq

tcosti,j pPv,wqu .

Note that according to our general position assumption, the shortest path between v and w, within

a given box, is unique.

First Stage: Preprocessing

The first stage of our algorithm is to construct a data structure in subquadratic time (and storage),

such that for each box Di,j , and for each pair of positions pv, wq P LˆR, we can retrieve the shortest

path P˚v,w in Di,j and costi,jpP˚v,wq in Op1q time, when such a path exists (i.e., when Spv, wq is

nonempty).

The algorithm enumerates all p2g´1q2 pairs of positions pv, wq in a gˆg matrix (box) such that

v P L and w P R, discarding pairs that cannot be connected by a monotone staircase path, and

referring to the surviving pairs as admissible. Again, we simplify the notation by upper bounding

this quantity by 4g2. For each such admissible pair pv, wq P LˆR, we also enumerate every possible

staircase path in Spv, wq as Pv,w : rt˚s Ñ rgs ˆ rgs, where we write Pv,w “
`

P r
v,w, P

c
v,w

˘

as a pair

of row and column functions P r
v,w, P

c
v,w : rt˚s Ñ rgs, so that Pv,wpkq “

`

P r
v,wpkq, P

c
v,wpkq

˘

, for

each k P rt˚s. (Note that t˚ is a path-dependent parameter, determined by v, w and the number

of diagonal moves in the path.) In total, there are Op32gq possible staircase paths Pv,w (for all

admissible pairs pv, wq P LˆR combined), which we enumerate. The above enumerations are done

using a natural lexicographic order, which induces a total order on the ă 4g2 admissible pairs

of positions of L ˆ R, and for each such pair pv, wq, a total order on all possible staircase paths

Pv,w P Spv, wq.

Given two staircase paths Pv,w and P 1v,w with the same starting and ending positions v, w in

a box Di,j , we want to use the extended Fredman trick (as in (4.3)) to compare costi,j pPv,wq

with costi,j
`

P 1v,w
˘

, by comparing two expressions such that one depends on points from Ai only

and the other depends on points from Bj only. Suppose that Pv,w “ pp`1,m1q, . . . , p`r,mrqq and

P 1v,w “ pp`
1
1,m

1
1q, . . . , p`

1
t,m

1
tqq (note that p`r,mrq “ p`

1
t,m

1
tq “ w, since both paths end at w, and

that we ignore the common starting positions p`0,m0q “ p`
1
0,m

1
0q “ v). We have

costi,j pPv,wq “
ˇ

ˇAip`1q ´Bjpm1q
ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇAip`rq ´Bjpmrq
ˇ

ˇ,

and

costi,j
`

P 1v,w
˘

“
ˇ

ˇAip`
1
1q ´Bjpm

1
1q
ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇAip`
1
tq ´Bjpm

1
tq
ˇ

ˇ,

and we want to test whether, say, costi,j pPv,wq ă costi,j
`

P 1v,w
˘

(recall that we assume that equa-

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 47

lities do not arise), that is, testing whether

ˇ

ˇAip`1q ´Bjpm1q
ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇAip`rq ´Bjpmrq
ˇ

ˇ ă
ˇ

ˇAip`
1
1q ´Bjpm

1
1q
ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇAip`
1
tq ´Bjpm

1
tq
ˇ

ˇ. (4.4)

The last term in each side of (4.4) is actually unnecessary, since they are equal. In order to

transform this inequality into a form suitable for applying the extended Fredman trick (4.3), we

need to replace each absolute value |x| by either `x or ´x, as appropriate. To see what we are

after, assume first that the expressions Aip`kq ´ Bjpmkq and Aip`
1
kq ´ Bjpm

1
kq are all positive, so

that (4.4) becomes

Aip`1q ´Bjpm1q ` ¨ ¨ ¨ `Aip`rq ´Bjpmrq ă Aip`
1
1q ´Bjpm

1
1q ` ¨ ¨ ¨ `Aip`

1
tq ´Bjpm

1
tq.

By (4.3) we can rewrite this inequality as

Aip`1q ` ¨ ¨ ¨ `Aip`rq ´Aip`
1
1q ´ ¨ ¨ ¨ ´Aip`

1
tq ă Bjpm1q ` ¨ ¨ ¨ `Bjpmrq ´Bjpm

1
1q ´ ¨ ¨ ¨ ´Bjpm

1
tq,

which can be written as

AipP
r
v,wp1qq ` ¨ ¨ ¨ `AipP r

v,wprqq ´AipP
1 r
v,wp1qq ´ ¨ ¨ ¨ ´AipP 1 rv,wptqq (4.5)

ă BjpP
c
v,wp1qq ` ¨ ¨ ¨ `BjpP c

v,wprqq ´BjpP
1 c
v,wp1qq ´ ¨ ¨ ¨ ´BjpP 1 cv,wptqq. (4.6)

If Pv,w “ P˚v,w (i.e., if Pv,w is the shortest path from v to w) in Di,j then the inequality above

holds for all pairs pPv,w, P 1v,wq, where P 1v,w P Spv, wq is any other staircase path between v and w.

For each admissible pair of positions pv, wq P L ˆ R, we choose some staircase path Pv,w as a

candidate for being the shortest path from v to w. The overall number of sets of candidate paths is

fewer than p32gq4g
2
“ 38g3 . For a fixed choice of such a set of paths (one path for each admissible

pair pv, wq P L ˆ R), we want to test, within some given box Di,j , whether all the ă 4g2 chosen

paths are the shortest paths between the corresponding pairs of positions. As unfolded next, we

will apply this test for all boxes Di,j , and output those boxes at which the outcome is positive (for

the current chosen set of shortest paths). We will repeat the procedure for all ă 38g3 possible sets

of candidate paths Pv,w. Since we enumerated the staircase paths in lexicographical order earlier,

we can easily proceed through all sets of candidate paths, using this order.

Testing a Fixed Choice of Shortest Paths. For each subsequence Ai, we create a (blue)

point αi, and for each subsequence Bj we create a (red) point βj , such that, for every admissible

pair pv, wq P LˆR, we have one coordinate for each path P 1v,w P Spv, wq, different from the chosen

path Pv,w. The value of αi (resp., βj) at that coordinate is the corresponding expression (4.5)

(resp., (4.6)). The points αi and βj are embedded in Rdg , where dg “
ř

pv,wq Γv,w is the sum over

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 48

all admissible pairs pv, wq P LˆR, and Γv,w is the number of monotone staircase paths from v to

w minus 1. As discussed earlier, dg “ Op32gq.

We have that a (blue) point

αi “
`

. . . , AipP
r
v,wp1qq ` ¨ ¨ ¨ `AipP r

v,wprqq ´AipP
1 r
v,wp1qq ´ ¨ ¨ ¨ ´AipP 1 rv,wptqq, . . .

˘

is dominated by a (red) point

βj “
`

. . . , BjpP
c
v,wp1qq ` ¨ ¨ ¨ `BjpP c

v,wprqq ´BjpP
1 c
v,wp1qq ´ ¨ ¨ ¨ ´BjpP 1 cv,wptqq, . . .

˘

,

if and only if each of the paths that we chose (a path for every admissible pair pv, wq P Lˆ R) is

the shortest path between the corresponding positions v, w in box Di,j . The number of points is

2s “ Θpn{gq, and the time to prepare them, i.e., to compute all their coordinates, is Op2s ¨32g ¨gq “

Op32gnq.

By Lemma 4.2.1, we can report all pairs of points pαi, βjq such that αi is dominated by βj , in

O
´

c
Op32g

q
ε pn{gq1`ε `K

¯

time, where K is the number of boxes at which the test of our specific

chosen paths comes out positive. As mentioned earlier, we use ε “ 1{2, with cε « 3.42.

This runtime is for a specific choice of a set of shortest paths between all admissible pairs in

LˆR. As already mentioned, we repeat this procedure at most 38g3 times. Overall, we will report

exactly s2 “ Θ
`

pn{gq2
˘

dominating pairs (red on blue), because the set of shortest paths between

admissible pairs in L ˆ R in each box Di,j is unique (recall that we assumed that any pair of

distinct staircase paths in a box do not have the same cost). Since the overall number of sets of

candidate paths is bounded by 38g3 , one path for each admissible pair, the overall runtime for all

invocations of the bichromatic dominance reporting algorithm (including preparing the points) is

O
´

38g3
´

32gn` cOp3
2g
q

ε pn{gq1`ε
¯

` pn{gq2
¯

.

Recall that, so far, we have assumed that all the differences within the absolute values

Di,jr`,ms “
ˇ

ˇAip`q ´ Bjpmq
ˇ

ˇ are positive, which allowed us to drop the absolute values, and

write Di,jr`,ms “ Aip`q ´Bjpmq, for every i, j P rss, and `,m P rgs, thereby facilitating the use of

the extended Fredman trick (4.3). Of course, in general this will not be the case, so, in order to

still be able to drop the absolute values, we also have to verify the signs of all these differences.

For each box Di,j , there is a unique sign assignment σ˚ : rgs ˆ rgs Ñ t´1, 1u such that

Di,jr`,ms “
ˇ

ˇAip`q ´Bjpmq
ˇ

ˇ “ σ˚p`,mqpAip`q ´Bjpmqq,

for every `,m P rgs (our “general position” assumption implies that each difference is nonzero).

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 49

Thus for any staircase path P “ pP r, P cq in Di,j , of length t˚, we have

costi,jpP q “
t˚
ÿ

t“1
σ˚pP ptqq pAipP

rptqq ´BjpP
cptqqq .

Now we proceed as before, testing sets of paths, but now we also test sign assignments of the

box, by trying every possible assignment σ : rgsˆ rgs Ñ t´1, 1u, and modify the points αi and βj ,

defined earlier, by (i) adding sign factors to each term, and (ii) adding coordinates that enable us

to test whether σ is the correct assignment σ˚ for the corresponding boxes Di,j .
Denote by P a candidate for the shortest path for some admissible pair of positions pv, wq P

LˆR, and let σ be a candidate sign assignment. Then, for every other path P 1 P Spv, wq, we have
the following modified coordinates for αi and βj respectively.

`

. . . , σpP p1qqAipP r
p1qq ` ¨ ¨ ¨ ` σpP prqqAipP r

prqq ´ σpP 1p1qqAipP 1 rp1qq ´ ¨ ¨ ¨ ´ σpP 1ptqqAipP 1 rptqq, . . .
˘

,

`

. . . , σpP p1qqBjpP c
p1qq ` ¨ ¨ ¨ ` σpP prqqBjpP c

prqq ´ σpP 1p1qqBjpP 1 cp1qq ´ ¨ ¨ ¨ ´ σpP 1ptqqBjpP 1 cptqq, . . .
˘

,

where we use the same notations as in (4.4), (4.5), and (4.6). In addition, to validate the correctness

of σ, we extend αi and βj by adding the following g2 coordinates to each of them. For every pair

p`,mq P rgs ˆ rgs, we add the following coordinates to αi and βj respectively.

p. . . ,´σp`,mqAip`q, . . .q ,

p. . . ,´σp`,mqBjpmq, . . .q .

This ensures that a point αi is dominated by a point βj iff Di,jr`,ms “ σp`,mq pAip`q ´Bjpmqq,

for every `,m P rgs, and all the ă 4g2 candidate paths that we test are indeed shortest paths in

Di,j .

The runtime analysis is similar to the preceding one, but now we increase the number of can-

didate choices by a factor of 2g2 (this factor bounds the number of all possible sign assignments),

and the dimension of the space where the points are embedded increases by g2 additional coor-

dinates. We now have 2s “ Θpn{gq points in Rdg`g2 (dg “ Op32gq is as defined earlier), and the

time to prepare them (computing the value of each coordinate) is Oppn{gqpdg ` g2qgq “ Op32gnq.

There are at most 38g3 sets of candidate paths to test, and for each set, there are at most 2g2 sign

assignment to test, so in total, we invoke the bichromatic dominance reporting algorithm at most

2g238g3
ă 38g3

`g2 times, for an overall runtime (including preparing the points) of

O
´

38g3
`g2

´

32gn` cOp3
2g
q`g2

ε pn{gq1`ε
¯

` pn{gq2
¯

.

By setting ε “ 1{2 and g “ δ log logn, for a suitable sufficiently small constant δ, the first

two terms become negligible (strongly subquadratic), and the runtime is therefore dominated by

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 50

the output size, that is O
`

pn{gq2
˘

“ O
`

n2{plog lognq2
˘

. Each reported pair pαi, βjq certifies that

the current set of ă 4g2 chosen candidate paths are all shortest paths in box Di,j . Each of the

s2 “ Θ
`

pn{gq2
˘

sets of shortest paths is represented by Opg3q “ Opplog lognq3q bits (there are

ă 4g2 shortest paths connecting admissible pairs, each of length at most 2g ´ 1, and each path

can be encoded by its first position, followed by the sequence of its at most 2g ´ 2 moves, where

each move is in one of the three directions up/right/up-right), and thus it can easily be stored

in one machine word (for sufficiently small δ). Moreover, we have an order on the pairs pv, wq

(induced by our earlier enumeration), so for each set, we can store its shortest paths in this order,

and therefore, accessing a specific path (for some admissible pair) from the set takes Op1q time (in

the word-RAM model that we assume).

Note, however, that we obtain only the positions that the paths traverse and not their cost. In

later stages of our algorithm we will also need to compute, on demand, the cost of certain paths,

but doing this naively would take Opgq time per path, which is too expensive for us. To handle

this issue, when we choose a candidate sign assignment σ, and a set S of the ă 4g2 paths as

candidates for the shortest paths, we also compute and store, for each path P P S that we have

not yet encountered, the rows-cost of P in Ai,

V r
i pP, σq “ σpP p1qqAipP rp1qq ` ¨ ¨ ¨ ` σpP pt˚qqAipP rpt˚qq,

for every i P rss, and the columns-cost of P in Bj ,

V c
j pP, σq “ σpP p1qqBjpP cp1qq ` ¨ ¨ ¨ ` σpP pt˚qqBjpP cpt˚qq,

for every j P rss, where t˚ is the length of P . Observe that, for the correct sign assignment σ˚ of

box Di,j ,

costi,jpP q “ V r
i pP, σ

˚q ´ V c
j pP, σ

˚q. (4.7)

We do not compute V r
i pP, σq ´ V c

j pP, σq yet, but only compute and store (if not already sto-

red) the separate quantities V r
i pP, σq and V c

j pP, σq, for each P P S, for every chosen set S, and

sign assignment σ. We store the values V r
i pP, σq and V c

j pP, σq in arrays, ordered by the earlier

enumeration of all staircase paths, so that given a staircase path P , and indices i, j P
”

n
g´1

ı

,

we can retrieve, upon demand, the values V r
i pP, σ

˚q and V c
j pP, σ

˚q, and compute costi,jpP q by

using (4.7), in Op1q time. In total, over all possible candidate paths and sign assignments, this

takes Op2g232g ¨ pn{gq ¨ gq “ Op3g2
`2gnq time and space, which is already subsumed by the time

(and space) bound for reporting dominances from the previous stage.

To summarize this stage of the algorithm, we presented a subquadratic-time preprocessing

procedure, which runs in O
`

pn{gq2
˘

“ O
`

n2{plog lognq2
˘

time, such that for any box Di,j , and

an admissible pair of positions pv, wq P L ˆ R, we can retrieve the shortest path P˚v,w in Op1q

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 51

Mi;jMi;j−1

Mi−1;j

L

R

Figure 4.3.1: The L-boundary (shaded in gray) of box Mi,j overlaps with the top boundary of Mi´1,j
and the right boundary of Mi,j´1. Once we have the values of M at the positions of the L-boundary
of Mi,j , our algorithm computes the values of M at the positions of its R-boundary (shaded in blue).

time, and can also compute costi,jpP˚v,wq in Op1q time. This will be useful in the next stage of our

algorithm.

Second Stage: Compact Dynamic Programming

Our approach is to view the pn` 1qˆ pn` 1q matrix M from the dynamic programming algorithm

(see Section 4.2) as decomposed into s2 “
´

n
g´1

¯2
boxes Mi,j , each of size g ˆ g, so that each

box Mi,j occupies the same positions as does the corresponding box Di,j . That is, the indices of

the rows (resp., columns) of Mi,j are those of Ai (resp., Bj). In particular, for each i, j P rss, the

positions p¨, gq on the right boundary of each box Mi,j coincide with the corresponding positions

p¨, 1q on the left boundary of Mi,j`1, and the positions pg, ¨q on the top boundary of Mi,j coincide

with the corresponding positions p1, ¨q on the bottom boundary of Mi`1,j . Formally, Mi,jr`,ms “

M rpi´ 1qpg ´ 1q ` `, pj ´ 1qpg ´ 1q `ms, for each position p`,mq P rgs ˆ rgs. See Figure 4.3.1 for

an illustration.

Our strategy is to traverse the boxes, starting from the leftmost-bottom one M1,1, where we

already have the values of M at the sequence L of positions of its left and bottom boundaries

(initialized to the same values as in the algorithm in Section 4.2), and we compute the values of

M on its top and right boundaries R. We then continue to the box on the right, M1,2, now having

the values on its L-boundary (where its left portion overlaps with the R-boundary of M1,1 and its

bottom portion is taken from the already preset bottom boundary), and we compute the values of

M on its R-boundary. We continue in this way until we reach the rightmost-bottom box M1,s. We

then continue in the same manner in the next row of boxes, starting at M2,1 and ending at M2,s,

and keep going through the rows of boxes in order. The process ends once we compute the values

of M on the R-boundary of the rightmost-top box Ms,s, from which we obtain the desired entry

M rn, ns.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 52

For convenience, we enumerate the positions in L as Lp1q, . . . , Lp2g ´ 1q in “clockwise” order,

so that Lp1q is the rightmost-bottom position p1, gq, and Lp2g ´ 1q is the leftmost-top position

pg, 1q. Similarly, we enumerate the positions of R by Rp1q, . . . , Rp2g ´ 1q in “counterclockwise”

order, with the same starting and ending locations. Let Mi,jpLq “ tMi,jrLp1qs, . . .Mi,jrLp2g´1qsu

and Mi,jpRq “ tMi,jrRp1qs, . . .Mi,jrRp2g ´ 1qsu, for i, j P rss.

By definition, for each position p`,mq P rn ` 1s ˆ rn ` 1s, M r`,ms is the minimal cost of a

staircase path from p0, 0q to p`,mq. It easily follows, by construction, that for each box Di,j , and

for each position w P R, we have

Mi,jrws “ min
vPL

pv,wq admissible

!

Mi,jrvs ` costi,jpP˚v,wq
)

. (4.8)

(Note that, by definition, the term Di,jrvs is included in Mi,jrvs and not in costi,jpP˚v,wq, so it is

not doubly counted.) For each box Mi,j and each position w P R, our goal is thus to compute the

position u P L that attains the minimum in (4.8), and the corresponding cost Mi,jrws. We call

such pu,wq the minimal pair for w in Mi,j .

For each box Di,j , and each admissible pair pv, wq P L ˆ R, we refer to the value Mi,jrvs `

costi,jpP˚v,wq as the cumulative cost of the pair pv, wq, and denote it by c-costpv, wq.

We can rewrite (4.8), for each position w P R, as

Mi,jrws “ min

MW
i,j rws, M

S
i,jrws

(

,

where MS
i,jrws is the minimum in (4.8) computed only over v P tLp1q, . . . , Lpgqu, which is the

portion of L that overlaps the R-boundary of the bottom (south) neighbor Mi´1,j (when i ą 1),

and MW
i,j rws is computed over v P tLpgq, . . . , Lp2g ´ 1qu, which overlaps the R-boundary of the left

(west) neighbor Mi,j´1 (when j ą 1). See Figure 4.3.1 for a schematic illustration. (Recall that the

bottommost row and the leftmost column of M are initialized with 8 values, except their shared

cell M r0, 0s that is initialized with 0.) The output of the algorithm is Ms,srRpgqs “ Ms,srg, gs “

M rn, ns. We can also return the optimal coupling, by using a simple backward pointer tracing

procedure, similar in principle to the one mentioned for the quadratic algorithm in Section 4.2.

Computing Minimal Pairs. We still have to explain how to compute the minimal pairs pu,wq

in each box Mi,j . Our preprocessing stage produces, for every box Di,j , the set of all its shortest

paths Si,j “ tP˚v,w | pv, wq P L ˆ Ru (ordered by the earlier enumeration of L ˆ R and including

only admissible pairs), and we can also retrieve the cost of each of these paths in Op1q time (as

explained earlier in the preprocessing stage). The cumulative cost (defined above) of each such

pair pv, wq can also be computed in Op1q time, assuming we have already computed Mi,jrvs. A

naive, brute-force technique for computing the minimal pairs is to compute all the cumulative costs

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 53

u′

u

w′

w

h

Mi,j

Figure 4.3.2: By Lemma 4.3.1, if pu,wq and pu1, w1q are minimal pairs in Mi,j , then the illustrated
scenario is impossible, since the path P˚u,w (in green) is a portion of the shortest path from M r0, 0s to
Mi,jrws, and the path P˚u1,w1 (in orange) is a portion of the shortest path from M r0, 0s to Mi,jrw

1s.
The illustrated intersection implies that one of the latter paths can decrease its cumulative cost by
replacing its portion that ends at h by the respective portion that ends in h of the other path (recall
that we assume that there are no two paths with the same cost), which contradicts the fact that both
of these paths are shortest paths.

c-costi,jpv, wq, for all admissible pairs pv, wq P LˆR, and select from them the minimal pairs. This

however would take Opg2q time for each of the s2 boxes, for a total of Θpg2s2q “ Θpn2q time, which

is what we want to avoid.

Fortunately, we have the following important lemma, which lets us compute all the minimal

pairs within a box, significantly faster than in Opg2q time.

Lemma 4.3.1. For a fixed box Di,j, and for any pair of distinct positions w,w1 P R, let u, u1 P L

be the positions for which pu,wq and pu1, w1q are minimal pairs in Mi,j. Then their corresponding

shortest paths P˚u,w and P˚u1,w1 can partially overlap but can never cross each other. Formally,

assuming that w ą w1 (in the counterclockwise order along R), we have that for any `, `1,m P rgs,

if p`,mq P P˚u,w and p`1,mq P P˚u1,w1 then ` ě `1. That is, P˚u,w lies fully above P˚u1,w1 (partial

overlapping is possible). In particular, we also have u ě u1 (in the clockwise order along L).

Lemma 4.3.1 asserts the so-called Monge property of shortest-path matrices (see, e.g., [45,116]).

See Figure 4.3.2 for an illustration (of an impossible crossing) and a sketch of a proof.

Using Lemma 4.3.1, we first present a divide-and-conquer paradigm for computing the minimal

pairs within a box Mi,j in Opg log gq time, which is conceptually simple to perceive. However, this

is not the best we can do. Afterwards, we present an even more efficient procedure that takes only

Opgq time in total.

We start by setting the median index k “ t|R|{2u of |R|, and compute the minimal pair pu,Rpkqq

and its c-costpu,Rpkqq, naively, in Opgq time, as explained above. The path P˚u,Rpkq decomposes the

box Mi,j into two parts, so that one part, X, consists of all the positions in Mi,j that are (weakly)

above P˚u,Rpkq, and the other part, Y , consists of all the positions in Mi,j that are (weakly) below

P˚u,Rpkq, so that X and Y are disjoint, except for the positions along the path P˚u,Rpkq which they

share. By Lemma 4.3.1, the shortest paths between any other minimal pair of positions in LˆR

can never cross P˚u,Rpkq. Thus, we can repeat this process separately in X and in Y . Note that

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 54

the input to each recursive step is just the sequences of positions of X and Y along L and R,

respectively (and we encode each sequence simply by its first and last elements); there is no need

to keep track of the corresponding portion of Mi,j itself.

Denote by T pa, bq the maximum runtime for computing all the minimal pairs pu,wq, within

any box Mi,j , for u in some contiguous portion L1 of a entries of L, and w in some contiguous

portion R1 of b entries of R. Clearly, T p1, bq “ Opbq, and T pa, 1q “ Opaq. In general, the runtime

is bounded by the recurrence

T pa, bq “ max
kPras

!

T pk, tb{2uq ` T pa´ k ` 1, tb{2uq

)

`Opaq.

It is an easy exercise to show, by induction, that the solution of this recurrence satisfies T pa, bq “

O ppa` bq log bq. Thus, the runtime of the divide-and-conquer procedure described above, for a

fixed box Mi,j , is O pp|R| ` |L|q log |R|q “ Opg log gq.

The runtime of computing Mi,jpRq for all s2 “ Θ
`

pn{gq2
˘

boxes is thus O
`

pn{gq2g log g
˘

“

O
`

n2 log g{g
˘

. Overall, including the preprocessing stage, the total runtime of the algorithm is

O
`

pn{gq2 ` n2 log g{g
˘

“ O
`

n2 log g{g
˘

. As dictated by the preprocessing stage, we need to choose

g “ Θplog lognq, so the overall runtime is O
`

n2 log log logn{ log logn
˘

.

A Further Improvement: Removing the log log logn Factor. We can speed up the compu-

tation of minimal pairs even further, so that computing Mi,jpRq for each box will take Opgq time,

improving the Opg log gq bound of the divide-and-conquer algorithm described above.

For each box Mi,j , denote by MLR
i,j the p2g ´ 1q ˆ p2g ´ 1q matrix such that the L and R

positions of Mi,j correspond to the rows and columns of MLR
i,j , respectively. Namely, each pair

pv, wq P L ˆ R corresponds to a cell in MLR
i,j that its value is c-costi,jpv, wq (that is, the cost of

the shortest path from the origin of M that goes through v and ends at w). For convenience, we

denote by MLR
i,j r`,ms the cell that corresponds to the pair pLp`q, Rpmqq P LˆR.

Lemma 4.3.1 implies the following observation.

Observation 4.3.2. The matrix MLR
i,j is a Monge matrix. That is, for every ` ă `1 P r2g´ 1s and

every m ă m1 P r2g ´ 1s, we have that

MLR
i,j r`,ms `M

LR
i,j r`

1,m1s ăMLR
i,j r`,m

1s `MLR
i,j r`

1,ms. (4.9)

Indeed, it is easy to check that if Equation (4.9) does not hold then we have a contradiction to

Lemma 4.3.1. (See [46] for a survey on Monge matrices and their applications.)

Observation 4.3.2 immediately implies that the matrix MLR
i,j is totally monotone. That is, for

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 55

every ` ă `1 P r2g ´ 1s and every m ă m1 P r2g ´ 1s, we have that

MLR
i,j r`,ms ąMLR

i,j r`,m
1s ùñ MLR

i,j r`
1,ms ąMLR

i,j r`
1,m1s.

To compute Mi,jpRq we need to find the minimum of every column w P R (i.e., to find

minvPLMLR
i,j rv, ws). Since MLR

i,j is totally monotone, we can use the SMAWK algorithm [9] to

compute the minimum of each column of R in total Op|L| ` |R|q “ Opgq time.

Thus, the runtime of computing Mi,jpRq for all s2 “ Θ
`

pn{gq2
˘

boxes becomes O
`

n2{g
˘

.

This bound in fact dominates the total runtime of the algorithm, provided the we choose g “

Θplog lognq, due to the preprocessing stage. Hence, we obtain that the total runtime of the

algorithm is O
`

n2{ log logn
˘

.

This completes the proof of Theorem 4.1.1 for DTW on a pair of point-sequences in R.

4.3.1 Extension to High-Dimensional Polyhedral Metric Spaces

The algorithm described above can be extended to work in higher dimensional spaces Rd, for

any constant d, when the underlying metric is polyhedral. That is, the underlying metric is

induced by a norm, whose unit ball is a symmetric convex polytope with Op1q facets. To illustrate

this extension, consider the L1-metric in Rd, whose unit ball is the symmetric cross-polytope

|x1|`¨ ¨ ¨`|xd| ď 1, with 2d facets. In this case, each entry in the blocks Di,j is a sum of d absolute

values. By choosing a candidate sign assignment for all the absolute values, each comparison that

the algorithm faces is a sign test of a 2d-linear expression in the input (with coefficients 1,´1), and

the extended Fredman trick (4.3) can then be applied when comparing the costs of two staircase

paths. Then, in much the same way as before, we can encode the inequalities into red and blue

points αi and βj , and use a suitable modification of the preceding machinery to compare costs

of staircase paths and validate sign assignments correctness. Omitting further details, we get a

subquadratic algorithm for DTW in such a higher-dimensional setup under the L1-metric, with the

same asymptotic time bound as that of the algorithm described above, but with the constant of

proportionality depending (exponentially) on d.

To handle general polyhedral metrics, let K denote the unit ball of the metric. For each pair

of points p` P A, qm P B, we choose some facet of K as a candidate for the facet that is hit by the

oriented ray that emanates from the origin in the direction of the vector ÝÝÑp`qm (this replaces the

sign assignments used in the one-dimensional case and for the L1-metric). Given such a candidate

facet, distpp`, qmq is a linear expression, and the extended Fredman trick, with all the follow-up

for comparing costs of staircase paths can be applied, except that we also need to validate the

correctness of our chosen candidate facet of K. This is done as follows.

Assume, without loss of generality, that each facet of K is a pd ´ 1q-simplex (this can be

achieved by a suitable triangulation of the facets). Consider a simplex-facet f , and let F be the

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 56

cone spanned by f with apex at the origin. F is the intersection of d halfspaces, each of the form

〈hi, x〉 ě 0, for suitable normal unit vectors h1, . . . , hd. In order to verify that the direction ÝÝÑp`qm

hits f , we need to verify that 〈hi, qm ´ p`〉 ě 0, or that 〈hi, qm〉 ě 〈hi, p`〉, for i “ 1, . . . , d. These

are d linear tests, which fit well into the frame of the extended Fredman trick (they replace the

sign test that are used in the one-dimensional case, and in the L1-case).

Again, omitting the further, rather routine details, we obtain a subquadratic algorithm for DTW

in any fixed dimension, under any polyhedral metric, with the same runtime as in Theorem 4.1.1

and as stated in Theorem 4.1.2. The constant of proportionality depends on the dimension d, and

on the complexity of the unit ball K of the metric (i.e., the number and complexity of its facets).

4.3.2 Lifting the General Position Assumption

In the algorithm above, we assumed that in each box Di,j there are no two staircase paths with

the same cost. This assumption was crucial for preserving the overall output size of the dominance

reporting routines to be Opn2{g2q. Specifically, all we need to ensure is that for each admissible

boundary pair from Lˆ R, there will be only one staircase path with minimum cost. Our goal is

to be able to break ties consistently. However, this is not trivial, as we must find a way to do it

while using the Fredman-Chan mechanism. We can do it as follows.

In the preprocessing stage, our algorithm enumerated all the ă 32g staircase paths in a g ˆ g

grid. These enumerations are done in a natural lexicographic order and thus induce a total order

on the staircase paths. Denote this total order by L. (Note that L is independent of the values of

A and B.)

Let A,B be two given input sequences of points (numbers) in R (a similar solution works for

the extension to Rd under polyhedral metrics described above). First, sort A and B in increasing

order in Opn lognq time. Find a positive closest pair pa, bq P AˆB, i.e., a pair satisfying

|a´ b| “ min
pai,bjqPAˆB: |ai´bj |ą0

t|ai ´ bj |u .

This can be done while merging the sorted A and B, in Opnq time. (If we are in a polyhedral

Rd metric space we use a straightforward modification of the standard Op2dn lognq divide-and-

conquer closest pair algorithm of Bentley and Shamos [32, 33] to find the positive closest pair in

the set A Y B.) Put ε “ |a ´ b|. For every boundary pair in L ˆ R there are strictly fewer than

32g staircase paths, denote this number by r. Set

ε1 “ ε{32g ă ε2 “ 2ε{32g ă ε3 “ 3ε{32g ă ¨ ¨ ¨ ă εr “ rε{32g.

For every boundary pair pv, wq P L ˆ R, and every staircase path Pv,w (recall that Pv,w is a

sequence of positions in the gˆ g grid, and is independent of the values of A and B), we check for

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 57

the index k of Pv,w in the total order L, and add εk to costi,jpPv,wq, for every i, j P
”

n
g´1

ı

.

For a boundary pair pv, wq P Lˆ R, let Pv,w and P 1v,w be two distinct staircase paths, and let

k, k1 P rrs be their corresponding (distinct) indices in the total order L. Assume, without loss of

generality, that k ă k1 (it must be that either k ă k1 or k1 ă k, since the two paths are distinct,

and L is a total order). Since εk ă εk1 ă |a´ b|, it holds that for every i, j P
”

n
g´1

ı

,

costi,jpPv,wq ď costi,jpP 1v,wq if and only if costi,jpPv,wq ` εk ă costi,jpP 1v,wq ` εk1 .

We now proceed with the same steps of the algorithm we described in Section 4.3 (and 4.3.1)

but with the modified path costs. (Note that we used the same ε1, . . . , εr for all boxes Di,j , thus

we can still use the extended Fredman trick for the new costs.) By the above, ties on the original

costs of (any) two distinct staircase paths break on their new costs, according to their order in L,

while the other relations (ă,ą) are preserved.

4.4 Geometric Edit Distance in Subquadratic Time

In this section, we show how our DTW algorithm from Section 4.3 can be modified to compute

gedpA,Bq (and optimal matching). Recall the definitions of monotone matching (see Figure 4.1.1),

gedpA,Bq, and optimal matching from Section 4.1.1. First, we overview the standard dynamic

programming algorithm for computing GED between two sequences A “ pp1, . . . , pnq and B “

pq1, . . . , qnq, each of n points in R.

The Quadratic Time GED Algorithm.

1. Initialize an pn` 1q ˆ pn` 1q matrix M and set M r0, 0s :“ 0.
2. For each ` P rns

2.1. M r`, 0s :“ `ρ, M r0, `s :“ `ρ.
3. For each ` P rns,
3.1. For each m P rns,
3.1.1 M r`,ms :“ min

!

M r`´ 1,ms ` ρ, M r`,m´ 1s ` ρ, M r`´ 1,m´ 1s `
ˇ

ˇp` ´ qm
ˇ

ˇ

)

.
4. Return M rn, ns.

The optimal matching can be retrieved by maintaining pointers from each p`,mq to the preceding

position p`1,m1q P tp`´ 1,mq, p`,m´ 1q, p`´ 1,m´ 1qu through which M r`,ms is minimized. By

tracing these pointers backwards from pn, nq to p0, 0q and including in the matching only the

positions that we reach “diagonally” (when going backwards), we obtain the optimal matching.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 58

Subquadratic Time GED Algorithm. Recall the all-pairs-distances matrix D and its decom-

position into boxes Di,j , as defined in Section 4.3. For a monotone matching M between two

point-subsequences Ai, Bj , let costi,jpMq be the corresponding sum of distances in the definition

of gedpAi, Bjq. To adapt our DTW algorithm for GED, we modify the way we evaluate the cost of

a staircase path P in a box Di,j , so that it equals the cost of its corresponding monotone matching

MpP q (defined below).

We view each box Di,j as a weighted directed grid graph G, whose vertices are the pairs of

rgs ˆ rgs, and its set of edges is

〈p`,mq, p`` 1,mq〉 | ` P rg ´ 1s, m P rgs
(

Ť

〈p`,mq, p`,m` 1q〉 | ` P rgs, m P rg ´ 1s
(

Ť

〈p`,mq, p`` 1,m` 1q〉 | `,m P rg ´ 1s
(

.

We refer to the edges in the first subset as vertical edges, the edges in the second subset as

horizontal edges, and the ones in the third subset as diagonal edges. The weight of the vertical

and horizontal edges is set to ρ, and the weight of each diagonal edge 〈p`,mq, p`` 1,m` 1q〉 is

|Aip`q´Bjpmq|. Each staircase path P in Di,j is then a path in the graph G, whose corresponding

monotone matching MpP q is defined to consist of exactly all the pairs of points pAip`q, Bjpmqq

that correspond to the positions p`,mq from the diagonal edges 〈p`,mq, p`` 1,m` 1q〉 of the path.

By defining costi,jpP q to be the weight of its corresponding path in G, we obtain that

costi,jpP q “ costi,jpMq, and that the dynamic programming matrix M (given above) satisfies

that for each position p`,mq P rn ` 1s ˆ rn ` 1s, M r`,ms is the minimal cost of a staircase path

from p0, 0q to p`,mq in D. This implies that Lemma 4.3.1 can be used in this setup too, for com-

puting the values on the R-boundaries of the boxes Mi,j , as done in the second stage of our DTW

algorithm. Thus, once we have a corresponding data structure from the preprocessing procedure,

we can apply the second stage of our DTW algorithm verbatim.

As for the preprocessing procedure, the cost of a staircase path in a box Di,j is now a sum of

distances |Aip`q ´ Bjpmq|, `,m P rgs, plus a multiple of the parameter ρ. Since ρ is a fixed real

number and the multiple of ρ in the cost of a staircase path in Di,j only depends on the positions of

the path (and is independent of the actual values of A and B), we can execute a similar machinery

as described in Section 4.3. That is, we can choose a candidate sign assignment as before, get a

linear expression in Aip`q and Bjpmq (which also involves a fixed multiple of ρ), then, the extended

Fredman trick (4.3) can be applied when comparing the costs of two staircase paths and validating

the correctness of candidate sign assignments. (Our algorithm works also for more general gap

penalty functions, as long as they are linear in the coordinates of the points of A Y B.) The rest

of the preprocessing procedure and the extension to high-dimensional polyhedral metric spaces

are similar to those we showed for DTW. In order to lift the general position assumption, a tiny

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 59

modification to what is described in Section 4.3.2 is required; to set ε from Section 4.3.2 as the

minimum over the distance of the positive closest pair from AYB and ρ, the rest is verbatim.

From the above, we obtain that gedpA,Bq (and an optimal matching) can be computed in

Opn2{ log lognq time, as stated in Theorems 4.1.1 and 4.1.2 for GED.

4.5 Near-Linear Depth Decision Trees for Discrete

Fréchet Distance under Polyhedral Metrics

The Fréchet distance is a measure of similarity between curves that takes into account the location

and ordering of the points along the curves. Therefore it is often better than the well-known

Hausdorff distance as a metric for comparing parameterized shapes. This measure was introduced

by Fréchet in 1906 [90].

Eiter and Mannila [78] introduced the discrete Fréchet distance, a variant also known as the

coupling distance. They showed that this distance provides a good approximation for the Fréchet

distance between curves, and provided a quadratic dynamic programming algorithm to compute

it.

Since then many studies have been made about the discrete problem in the Euclidean plane. To

name a few, Agarwal et al. [7] showed a subquadratic algorithm that runs in Opn2 log logn{ lognq

time, Buchin et al. [42] showed an algebraic computation tree lower bound of Ωpn lognq, and

Bringmann [38] recently showed that there is no algorithm with runtime Opn2´Ωp1qq, assuming the

Strong Exponential Time Hypothesis (SETH).

While much work has been made on the Euclidean discrete Fréchet distance, the problem in

other metrics, such as L1 and L8 has been much less investigated.

A related recent lower bound by Bringmann and Mulzer [40] shows that, assuming SETH,

the discrete Fréchet distance cannot be solved in O
`

n2´Ωp1q˘ time even for the one-dimensional

case (with the standard distance function distpx, yq “ |x ´ y|). Their result is relevant to the

problems we investigate in this section, as the one-dimensional case lower bound fits to any Lp

norm, 1 ď p ď 8. In other words, their conditional lower bound holds for the discrete Fréchet

distance under any Lp norm, 1 ď p ď 8 (including L8).

From now on, The term M -Discrete Fréchet Distance Decision refers to the decision problem of

determining whether the discrete Fréchet distance is at most some given parameter ε ą 0, when the

underlying norm is M . The term M -Discrete Fréchet Distance refers to the problem of computing

the actual discrete Fréchet distance, when the underlying norm is M .

Our Results and Related Works. Given two n-point-sequences A, B in Rd, our contribution

is stated in the following theorems.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 60

Theorem 4.5.1. There is a 2-linear decision tree with depth Opn log2 nq for the L8-Discrete

Fréchet Distance between A and B, for any constant dimension d.

Theorem 4.5.2. There is a 2d-linear decision tree with depth Opn log2 nq for the L1-Discrete

Fréchet Distance between A and B, for any constant dimension d.

Theorem 4.5.3. Given a polyhedral metric2 M , there is a 2d-linear decision tree with depth

Opn log2 nq for the M -Discrete Fréchet Distance between A and B, for any constant dimension d.

Theorem 4.5.3 is a generalization of Theorem 4.5.2. However, since the L1 metric is a quite

popular polyhedral metric, we feel it is worth stating the L1 case separately, as given in Theo-

rem 4.5.2.

As mentioned above, the Ωpn2´op1qq conditional lower bound of Bringmann and Mulzer [40]

holds for the problems that we study. We find the big gap between their near-quadratic conditional

lower bound in the uniform model to our near-linear upper bound in the linear decision tree model

particularity interesting.

In a related result, Buchin et al. [43] showed that the algebraic decision tree complexity of the

Euclidean-Discrete Fréchet Distance problem in the plane is rOpn4{3q. This result is obtained by

using a range searching technique of Katz and Sharir [117]. In Section 4.5.2 we will briefly review

this result, and in Section 4.5.3 we argue that, for the problem under polyhedral metrics (e.g., L1

and L8) in Rd, the standard range searching approach does not seem capable of giving us the

results we aim for, which we will establish using a different approach.

To prove the theorems above, we use a variant of the extended Fredman’s trick (see Section 2.2).

4.5.1 Problem Statement and Quadratic Algorithm

The Fréchet distance is often illustrated by a man and a dog, each walking along a path (curve).

The man has the dog on a leash. Each of them may choose their own speed and may stop but

cannot walk backwards. Then the Fréchet distance is the length of the shortest leash that allows

them to walk on their respective curves from beginning to end.

More formally, following [78] we define a curve as a continuous mapping f : r0, 1s Ñ V , where

pV, ρq is a metric space. Given two curves f : r0, 1s Ñ V and g : r0, 1s Ñ V , their Fréchet distance

is defined as

δF pf, gq “ inf
α,β

max
tPr0,1s

ρpfpαptqq, gpβptqqq,

where α and β are arbitrary continuous nondecreasing functions from r0, 1s onto r0, 1s.

When computing the Fréchet distance between arbitrary curves, one typically approximates the

curves by polygonal curves. Eiter and Mannila [78] defined the discrete Fréchet distance between
2That is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope with a

constant number of facets (this constant generally depends on the dimension d).

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 61

polygonal curves and showed that it gives a good approximation to the Fréchet distance between

them.

A polygonal curve with n edges is a curve P : r0, 1s Ñ V , such that for each i P t0, 1, . . . , n´1u,

the restriction of P to the interval
“

i
n ,

i`1
n

‰

is affine. Since the Fréchet distance is invariant under

reparametrization, we can assume a polygonal curve P to be given by the ordered list of its vertices,

i.e., a sequence P “ pp0, . . . , pnq.

Let P “ pp0, . . . , pnq and Q “ pq0, . . . , qmq be two polygonal curves given by their ordered

lists of vertices. As in the study of the DTW distance in Section 4.1, a coupling C “ pc0, . . . , ckq

between P and Q is an ordered sequence of distinct pairs of vertices in P , Q, such that c0 “ pp0, q0q,

ck “ ppn, qmq and cr “ ppi, qjq ñ cr`1 P tppi`1, qjq, ppi, qj`1q, ppi`1, qj`1qu. The discrete Fréchet

distance between P and Q is

δdF pP,Qq “ min
C coupling

max
ppi,qjqPC

ρppi, qjq.

Eiter and Mannila [78] showed that

δF pP,Qq ď δdF pP,Qq ď δF pP,Qq `maxtDpP q, DpQqu,

where DpP q (resp., DpQq) is the length of the longest edge in P (resp., Q). Thus, if we add vertices

to the curves P , Q so that their edge lengths tend to zero, their discrete Fréchet distance will tend

to their Fréchet distance.

Dynamic Programming Algorithm. Following [78], we quickly review the standard quadratic

dynamic programming algorithm for the decision version of the discrete Fréchet distance, in a

metric space pV, ρq.

Given two point sequences A “ pa1, . . . , anq, B “ pb1, . . . , bnq, and a parameter ε ą 0, the

algorithm creates an nˆ n Boolean matrix M , whose rows and columns correspond to the points

of A and B, respectively. The algorithm fills the matrix with values 0{1 row by row. Every cell

Mi,j in the matrix is filled by 1 iff both conditions hold:

1. At least one of the cells Mi´1,j , Mi,j´1, Mi´1,j´1 is filled with 1.

2. The distance ρpai, bjq is at most ε.

Otherwise, Mi,j is filled by 0. Intuitively, an entry Mi,j is equal to 1 iff the pair pai, bjq is reachable

from the starting placement pa1, b1q of the trip with a “leash” of length ε. Otherwise, Mi,j is equal

to 0.

The runtime of the algorithm is quadratic and the number of input comparisons it makes is also

quadratic, as there are potentially n2 distinct pairs of points pai, bjq to check whether ρpai, bjq ď ε.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 62

4.5.2 Decision Tree for the Euclidean Plane

Buchin et al. [43] showed a quadratic algebraic decision tree (where each branching is a sign test

of a quadratic expression) with depth Opn4{3 log3 nq for the Euclidean-Discrete Fréchet Distance in

the plane.

First, they construct a decision tree for the Euclidean-Discrete Fréchet Distance Decision, as

follows. The decision tree is based on invoking the quadratic dynamic programming algorithm

following a preprocessing stage. All the input comparisons in the dynamic programming algorithm

are made by checking if the distance of a point ai P A from a point bj P B is less than the fixed

given parameter ε. The preprocessing stage will compute and store the answers for these pairwise

distance queries in a Boolean matrix T :“ ptijq, where tij “ 1 if }ai ´ bj}2 ď ε, otherwise tij “ 0.

Given two point sequences A, B, with |A| “ n, |B| “ m, and a parameter ε ą 0, denote, for

each point a P A, the circle of radius ε centered at a as ca. A point b P B lies inside a circle ca
iff }a ´ b}2 ď ε. We obtain a set C of n congruent circles (all of radius ε) and a set P “ B of m

points.

Katz and Sharir [117] showed that one can compute a compact representation of the set of pairs

of the form pc, pq, where p P P , c P C, and p lies inside c, in O
`

pm2{3n2{3 `m` nq logn
˘

time

(and thus, this bound holds also for the number of input comparisons). This information suffices

to construct T and invoke the dynamic programming algorithm in Opmnq time, but without using

any further input comparisons. Thus, when |A| “ |B| “ n, the number of input comparisons is

Opn4{3 lognq.

Agarwal et al. [7] showed that the optimization problem can be solved by using a distance se-

lection algorithm in the plane (that returns the k-th smallest distance in AˆB, for any prespecified

k) to guide a binary search, using the decision procedure. Overall, there are Oplognq calls to the de-

cision procedure and to the distance selection algorithm. The distance selection algorithm of Katz

and Sharir [117] runs in Opn4{3 log2 nq time. Thus, in total, we obtain that the quadratic algebraic

decision tree complexity of Euclidean-Discrete Fréchet Distance in the plane is O
`

n4{3 log3 n
˘

.

4.5.3 Decision Trees for the Decision Problem under Polyhedral Metrics

Similar to the Euclidean case, range searching techniques can also be used for the Discrete Fréchet

Distance Decision problem under other metrics, for computing the pairwise distance queries in the

decision tree. However, as we now show, these techniques, when routinely implemented for the

L8 or L1 metrics in Rd, will give weaker bounds than those we aim for in Theorem 4.5.2 and

Theorem 4.5.1.

The simpler case is for the L8 metric, for which the unit ball in Rd is a d-dimensional hyper-

cube. One can compute a d-dimensional range tree data structure for the points of A, in time

Opn logd´1 nq. For each point b “ pb1, . . . , bdq P B, denote by cb its corresponding d-sphere (under

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 63

L8) of radius ε, centered at b. Clearly, cb is a d-dimensional hypercube of side-length 2ε.

For each b P B, we query the range tree with its corresponding hypercube cb. This will give us a

compact representation of all the points of A that lie in cb. The cost of a query in a d-dimensional

range tree is Oplogd nq. Using fractional cascading, this can be improved to Oplogd´1 nq time. In

total, this approach leads to a 2-linear decision tree of depth Opn logd´1 nq.

For the L1 metric, its unit ball is a d-dimensional cross-polytope with 2d facets. Thus, the most

naive querying such a ball will require 2d queries, each performing Oplognq 2d-linear comparisons,

resulting in a 2d-linear decision tree of depth Opn log2d nq.

The range searching data structure is appropriate also when the queries are not known in

advance. Using Fredman’s trick, we leverage the fact that in our case all the queries are known in

advance, to obtain better decision trees.

Decision Tree for L1-Discrete Fréchet Distance Decision. We start by presenting a 4-linear

decision tree with depth Opn lognq for the L1-Discrete Fréchet Distance Decision in R2, and then we

explain how to modify it to obtain a 2d-linear decision tree with depth Opn lognq for the problem

in Rd. In Section 4.5.4 we will show how to solve the optimization problem by running through

this decision tree Oplognq times. This will prove Theorem 4.5.2.

The following property allows us to apply Fredman’s trick on pairwise distance queries under

the L1 norm.

For any real numbers x, y, z P R, with z ě 0, |x| ` |y| ď z if and only if all the following

inequalities hold.

x` y ď z, x´ y ď z,

´x` y ď z, ´x´ y ď z.

Since the L1 distance between a point ai “ pxi, yiq and a point bj “ pxj , yjq is defined by

}ai ´ bj}1 “ |xi ´ xj | ` |yi ´ yj | ,

the property above leads to the following observation.

Observation 4.5.4. For ai “ pxi, yiq, bj “ pxj , yjq P R2, }ai ´ bj}1 ď ε if and only if all the

following inequalities hold.

xi ` yi ď xj ` yj ` ε,

xi ´ yi ď xj ´ yj ` ε,

´xi ` yi ď ´xj ` yj ` ε,

´xi ´ yi ď ´xj ´ yj ` ε.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 64

This observation is a sort of generalization of Fredman’s trick for the L1 distance between two

points in the plane.

Recall that we are given two point sequences in the plane A “ pa1, . . . , anq, B “ pb1, . . . , bnq,

and a distance parameter ε. The following algorithm determines whether δdF pA,Bq ď ε.

1. Sort D1 :“ txi ` yi, x1j ` y1j ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu.

2. Sort D2 :“ txi ´ yi, x1j ´ y1j ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu.

3. Sort D3 :“ t´xi ` yi, ´x1j ` y1j ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu.

4. Sort D4 :“ t´xi ´ yi, ´x1j ´ y1j ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu.

5. Using Observation 4.5.4, given the sorted orders on D1, . . . , D4, construct the nˆn Boolean

matrix

T :“ ptijq, where tij “

$

’

&

’

%

1 if }ai ´ bj}1 ď ε

0 otherwise.

6. Invoke the dynamic programming algorithm using T to settle all the distance queries.

Steps 1–4 require Opn lognq comparisons. Using Observation 4.5.4, Step 5 requires no compa-

risons (on the raw data) at all, given the sorted orders on D1, . . . , D4. Specifically, to test whether

}ai´ bj}1 ď ε, we test the four corresponding inequalities from Observation 4.5.4. Each inequality

test is resolved by the sorted orders on D1, . . . , D4. Step 6 requires no comparisons on the input

data, given the matrix T from Step 5. All comparisons are sign tests of 4-linear expressions. In

total, the number of comparisons is Opn lognq. The algorithm can be implemented to run in Opn2q

time (in the uniform model), using only Opn lognq input comparisons.

The algorithm can easily be extended to Rd, by using additional sorting steps (similar to

steps 1–4), which lead to a 2d-linear decision tree with depth Opn lognq (where the constant

of proportionality depends exponentially on d). A generalization of Observation 4.5.4 to points

ai “ pxi,1, . . . , xi,dq, bj “ pxj,1, . . . , xj,dq in Rd leads to 2d inequalities, each defined by a vector

δ P t´1, 1ud, and has the form
d
ÿ

k“1
δkxi,k ď

d
ÿ

k“1
δkxj,k ` ε. (4.10)

Each such inequality is a 2d-linear expression. Thus, for the same problem in Rd, the algorithm

has 2d sorting steps, and all comparisons are sign tests of 2d-linear expressions.

Decision Tree for L8-Discrete Fréchet Distance Decision. The previous algorithm can easily

be modified (and simplified) for the L8-Discrete Fréchet Distance Decision problem, but now each

comparison will use only two of the input terms, unlike the previous algorithm, where each com-

parison used 2d input terms. As before, we first consider the problem in R2, and later extend it to

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 65

Rd. The L8 distance between a point ai “ pxi, yiq P R2 and a point bj “ pxj , yjq P R2 is defined

by }ai ´ bj}8 “ maxt|xi ´ xj | , |yi ´ yj |u. Hence,

}ai ´ bj}8 ď εô p|xi ´ xj | ď εq ^ p|yi ´ yj | ď εq .

Thus we obtain the following observation.

Observation 4.5.5. For ai “ pxi, yiq, bj “ pxj , yjq P R2, }ai ´ bj}8 ď ε if and only if all the

following inequalities hold.

xi ď xj ` ε, xj ď xi ` ε,

yi ď yj ` ε, yj ď yi ` ε.

This leads to the following variant of the previous algorithm given above, where the sets to be

sorted in Steps 1–4 are:

D1 :“ txi, x1j ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu,

D2 :“ tx1j , xi ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu,

D3 :“ tyi, y1j ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu,

D4 :“ ty1j , yi ` ε | ai “ pxi, yiq P A, bj “ px1j , y1jq P Bu.

Using Observation 4.5.5, given the sorted orders on D1, . . . , D4, one can construct the Boolean

matrix T from Step 5 with no further comparisons. Then, one can invoke the dynamic programming

algorithm and use T for the distance queries, as in Step 6.

Similarly to the L1 norm, the above algorithm uses Opn lognq input comparisons, each of which

is a sign test of a 2-linear expression, and can be implemented to run in Opn2q time (in the uniform

model).

Following a generalization of Observation 4.5.5 to points in Rd, the algorithm can be extended

to Rd by adding additional sorting steps. We have 2d sorting steps for the problem in Rd, two for

each coordinate. Each comparison will still be a 2-linear expression. Thus in total we obtain a

2-linear decision tree with depth Opn lognq for the problem in Rd, for any constant d. Here the

constant of proportionality depends only linearly on d.

Extension to General Polyhedral Metrics in Rd. The decision tree described above can be

extended to work under general polyhedral metrics in Rd, for any constant d. That is, we assume

that the underlying metric is induced by a norm, whose unit ball K is a symmetric convex polytope

with |K| “ Op1q facets. Each facet of K corresponds to (at most) 2d-linear expression, similar

to (4.10) but possibly with coefficients that are different from 1. Thus, after |K| sorting steps we

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 66

can use Fredman’s trick to obtain the matrix T from Step 5 with no further comparisons on the

input data. The rest of the algorithm proceeds more or less verbatim.

4.5.4 Solving the Optimization Problem

In Section 4.5.3 we gave 2d-linear decision trees with depth Opn lognq, for the Discrete Fréchet

Distance Decision problem under general polyhedral metrics, and a 2-linear decision tree with

depth Opn lognq for the L8-Discrete Fréchet Distance Decision problem. In order to prove our

results, we next show how to solve the Discrete Fréchet Distance optimization problem using a

corresponding linear decision tree with depth Opn log2 nq.

We start with the L8-Discrete Fréchet Distance problem. Then, we show how to extend our

approach for L1, and then for general polyhedral metrics.

L8-Discrete Fréchet Distance. Our procedure is similar to one we will give in Section 5.4, for

finding the closest pair of points under the L8 metric in Rd, using the decision procedure for this

problem. Thus, here we will give only the general idea, and we refer the reader to Section 5.4 for

more technical details, as the procedures are more or less verbatim.

We are given two point-sequences A “ ta1, . . . , anu, B “ tb1, . . . , bnu in Rd. The solution δ0,

for the L8-Discrete Fréchet Distance in Rd, is one of the Opdn2q values airks ´ bjrks, i, j P rns,

k P rds. For each k P rds, we sort the points of A and B in increasing order of their k-th coordinate.

This takes Opdn lognq comparisons in total. Let
´

a
pkq
1 , . . . , a

pkq
n

¯

and
´

b
pkq
1 , . . . , b

pkq
n

¯

denote the

sequences of the points of A and B sorted in increasing order of their k-th coordinate, respectively.

For each k P rds, let M pkq be an nˆ n matrix, so that for i, j P rns, we have

M pkqri, js “ a
pkq
i rks ´ b

pkq
j rks.

We view the row indices from bottom to top, i.e., the first row is the bottommost one, and the

column indices from left to right. We are in fact interested only in the upper triangular portion of

M pkq, where its elements are positive, but for simplicity of presentation, we can ignore this issue

(since for negative values the decision procedure will always return false anyway).

Observe that each row of M pkq is sorted in decreasing order and each column is sorted in

increasing order. Under these conditions, the selection algorithm of Frederickson and Johnson [91]

can find the t-th-smallest element of M pkq, for any 1 ď t ď n2, in Opnq time.3

We use this method to conduct a simultaneous binary search, using the decision procedure

from Section 4.5.3, over all d matrices M pkq, to find δ0. At each step of the search we maintain

two counters Lk ď Hk, for each k. Initially Lk “ 1 and Hk “ n2. The invariant that we maintain
3Simpler algorithms can select the t-th-smallest element in such cases in Opn lognq time, which is also sufficient

for our result.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 67

is that, at each step, δ0 lies in between the Lk-th and the Hk-th smallest elements of M pkq, for

each k.

For more technical details, we refer the reader to the procedure in Section 5.4, which is more or

less verbatim. Overall, this procedure stops after Oplogn`log dq calls to the corresponding decision

procedure from Section 4.5.3 and Opd lognq calls to the the selection algorithm of Frederickson

and Johnson [91]. Thus, in total, we obtain that the number of input comparisons is bounded

by Opn log2 nq, for any constant d. Note that each comparison we made involves only two input

terms, thus we obtain a 2-linear decision tree with depth Opn log2 nq, for any constant d, where

the constant of proportionality depends linearly on d. This completes the proof of Theorem 4.5.1.

L1-Discrete Fréchet Distance. The technique described above for the L8 metric can easily be

extended to the L1 metric. The L1 distance between a pair of points a, b P Rd is
řd
k“1 |arks ´ brks|,

which can be written as
řd
k“1 δrks parks ´ brksq, for a suitable sign vector δ “ pδr1s, . . . , δrdsq, which

depends on a and b, where each of its entries δris, i P rds, is 1 or ´1.

We iterate over all 2d sign vectors. For each such vector δ, we form the following two sequences,

each of which is sorted in increasing order, Apδq “ papδq1 , . . . , a
pδq
n q and Bpδq “ pbpδq1 , . . . , b

pδq
n q, where

4

a
pδq
i “

d
ÿ

k“1
δrksairks

b
pδq
i “

d
ÿ

k“1
δrksbirks,

for i P rns. Then, for each pair ai P A, bj P B, there exists a sign vector δ such that the L1 distance

between ai and bj is apδqi ´ b
pδq
j . In analogy with the L8 case, we define, for each δ, the matrix

M pδq so that

M pδqri, js “ a
pδq
i ´ b

pδq
j ,

for i, j P rns. As before, each row (resp., column) of each of these matrices is sorted in increasing

(resp., decreasing) order (since the sequences Apδq and Bpδq are sorted in increasing order). We now

have to search simultaneously through all these 2d matrices for the entry that gives the discrete

Fréchet distance between A and B, and we do it in full analogy to the way it was done in the

L8 case, except that the number of matrices increases from d to 2d. Thus, we pay Op2dn lognq

comparisons to sort the elements of Apδq and Bpδq, for each possible sign vector δ. We have

Oplogn` dq calls to the corresponding decision procedure from Section 4.5.3 and Op2d lognq calls

to the the selection algorithm of Frederickson and Johnson [91]. Thus, in total, we pay Opn log2 nq

comparisons, for any constant d, where the constant of proportionality depends exponentially on d.
4Note the slight abuse of notation, as the order of the indices in the sorted sequences Apδq and Bpδq depends on

the sign vector δ.

CHAPTER 4. GEOMETRIC PATTERN MATCHING ALGORITHMS 68

This completes the proof of Theorem 4.5.2.

Discrete Fréchet Distance under General Polyhedral Metrics. The case of a general poly-

hedral metric is handled similarly to the L1 and L8 cases. For each facet f of the unit ball K

of the metric, with normal vector nf , we form the following two sequences, each one is sorted in

increasing order, Apfq “ papfq1 , . . . , a
pfq
n q and Bpfq “ pb

pfq
1 , . . . , b

pfq
n q, where 5

a
pfq
i “ xai,nf y

b
pfq
i “ xbi,nf y,

for i P rns. Then, for each pair ai P A, bj P B, there exists a facet f such that the polyhedral

distance between ai and bj is apfqi ´ b
pfq
j . This allows us to adapt the algorithm for the L1 distance

to this case too, where the number of matrices in which we search is the number of facets |K| of

the unit ball K of the metric.

In this case, we pay O p|K|n lognq comparisons to sort the elements of Apfq and Bpfq. We have

Oplogn`log |K|q calls to the corresponding decision procedure from Section 4.5.3 and O p|K| lognq

calls to the the selection algorithm of Frederickson and Johnson [91]. Thus, in total, we pay

Opn log2 nq comparisons, for any constants d and |K|, where the constant of proportionality de-

pends linearly on the number of facets |K|. This completes the proof of Theorem 4.5.3.

5Here too, the order of the indices in the sorted sequences Apδq and Bpδq depends on the facet f .

Chapter 5

High Dimensional Closest Pair

under L8 and Dominance Product

69

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 70

5.1 Background

Finding the closest pair among a set of n points in Rd was among the first studied algorithmic

geometric problems, considered at the origins of computational geometry; see [136, 144]. The

distance between pairs of points is often measured by the Lτ metric, for some 1 ď τ ď 8, under

which the distance between the points pi “ ppir1s, . . . , pirdsq and pj “ ppjr1s, . . . , pjrdsq is

distτ ppi, pjq “ }pi ´ pj}τ “
˜

d
ÿ

k“1

ˇ

ˇpirks ´ pjrks
ˇ

ˇ

τ

¸1{τ

,

for τ ă 8, and

dist8ppi, pjq “ }pi ´ pj}8 “ max
k

ˇ

ˇpirks ´ pjrks
ˇ

ˇ,

for τ “ 8. The Closest Pair problem and its corresponding decision variant, under the Lτ -metric,

are defined as follows.

Closest Pair: Given a set S of n points in Rd, find a pair of distinct points pi, pj P S such that

distτ ppi, pjq “ min`‰mtdistτ pp`, pmq | p`, pm P Su.

Closest Pair Decision: Given a set S of n points in Rd, and a parameter δ ą 0, determine

whether there is a pair of distinct points pi, pj P S such that distτ ppi, pjq ď δ.

Throughout this chapter, the notation Lτ Closest Pair refers to the Closest Pair problem under some

specific metric Lτ , for 1 ď τ ď 8 (and we will mostly consider the case τ “ 8).

In the algebraic computation tree model, the Closest Pair problem has a complexity lower bound

of Ωpn lognq (for any Lτ metric), even for the one-dimensional case d “ 1, as implied from a lower

bound for the Element-Uniqueness problem [31].

As for upper bounds, Bentley and Shamos [32, 33] were the first who gave a deterministic

algorithm for finding the closest pair under the L2 metric that runs in Opn lognq time for any

constant dimension d ě 1, which is optimal in the algebraic computation tree model, for any fixed

d. Their algorithm uses the divide-and-conquer paradigm, and became since, a classical textbook

example for this technique. In 1976 Rabin presented, in a seminal paper [139], a randomized

algorithm that finds the closest pair in Opnq expected time, using the floor function (which is

not included in the algebraic computation tree model). His algorithm uses random sampling to

decompose the problem into smaller subproblems, and uses the floor function in solving them, for

a total of Opnq expected time. Later, in 1979, Fortune and Hopcroft [89] gave a deterministic

algorithm that uses the floor function, and runs in Opn log lognq time.

The bounds above hold as long as the dimension d is constant, as they involve factors that are

exponential in d. Thus, when d is large (e.g., d “ n), the problem seems to be much less understood.

Shamos and Bentley [33] conjectured in 1976 that, for d “ n, and under the L2 metric, the problem

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 71

can be solved in Opn2 lognq time; so far, their conjectured bound is considerably far from the Opnωq

state-of-the-art time bound for this case [112], where ω ă 2.373 denotes the exponent for matrix

multiplication (see below). If one settles for approximate solutions, many efficient algorithms

were developed in the last two decades, mostly based on LSH (locality sensitive hashing) schemes,

and dimensionality reduction via the Johnson-Lindenstrauss transform; see [13, 19] for examples

of such algorithms. These algorithms are often used for finding approximate nearest neighbors,

which itself is of major importance and in massive use in many practical fields of computer science.

Nevertheless, finding an exact solution seems to be a much harder task.

We consider the case where d depends on n, assuming specifically that d “ nr for some r ą 0.

Note that a naive brute-force algorithm runs in Opn2dq time and works for any metric Lτ . For some

Lτ metrics, a much faster solution is known; see [112]. Specifically, the L2 Closest Pair problem

can be solved by one algebraic matrix multiplication, so for example when d “ n, it can be solved

in Opnωq time (as already mentioned above). If τ ě 2 is an even integer, then Lτ Closest Pair can

be solved in Opτnωq time. However, for other Lτ metrics, such as when τ is odd (or fractional), or

the L8 metric, the known solutions are significantly inferior.

For the L1 and L8 metrics, Indyk et al. [112] obtained the first (and best known until now)

non-naive algorithms for the case d “ n. For L1, they gave an algorithm that runs in O
´

n
ω`3

2

¯

“

Opn2.687q time, and for L8, one that runs in O
´

n
ω`3

2 logD
¯

“ Opn2.687 logDq time, where D is

the diameter of the given point-set. The bound for L8 is weakly polynomial, due to the dependence

on D, and, for real data, only yields an approximation. Their paper is perhaps the most related

previous work to our study.

Our new approach is based on two main observations. The first is showing a reduction from L8
Closest Pair Decision to another well-studied problem, dominance product. The second is by showing

we can solve the optimization problem deterministically by executing the decision procedure only

Oplognq times.

We also give improved runtime analysis for the dominance product problem, defined as follows.

Dominance Product: given a set S of n points p1, . . . , pn in Rd, compute a matrix D such

that for each i, j P rns, Dri, js “
ˇ

ˇ

ˇ
tk | pirks ď pjrksu

ˇ

ˇ

ˇ
.

This matrix is called the dominance product or dominance matrix for S. For d “ n, there is a non-

trivial strongly subcubic algorithm by Matoušek [129] (see Section 5.2), and a slightly improved one

by Yuster [158]. For d ď n, there are extensions of Matoušek’s algorithm by Vassilevska-Williams,

Williams, and Yuster [149]. All of them use fast matrix multiplications.

Dominance product computations were liberally used to improve some fundamental algorithmic

problems. For example, Vassilevska-Williams, Williams, and Yuster [149] gave the first strongly

subcubic algorithm for the all pairs bottleneck paths (APBP) problem, using dominance product

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 72

computations. Duan and Pettie [74] later improved their algorithm, also by using dominance

product computations. Yuster [158] showed that APSP can be solved in strongly subcubic time

if the number of distinct weights of edges emanating from any fixed vertex is Opn0.338q. In his

algorithm, he uses dominance product computation as a black box.

5.1.1 Summary of Our Results

Let DP pn, dq denote an upper bound on the runtime of computing the dominance product (defined

above) of n points in Rd. We obtain the following results for the L8 Closest Pair problem in Rd,

where d “ nr, for some r ą 0.

Theorem 5.1.1. L8 Closest Pair can be solved by a deterministic algorithm that runs in

OpDP pn, dq lognq time.

Theorem 5.1.1 improves the Opn2.687 logDq time bound of Indyk et al. [112] (see above) in two

aspects. First, the polynomial factor n2.687 goes slightly down to DP pn, nq “ n2.684, which we

then improve further to n2.6598 in Theorem 5.1.4; this holds also for Theorem 5.1.2, stated below.

The second aspect is that the logD factor is replaced by a logn factor, which makes our algorithm

strongly-polynomial, independent of the diameter of the given point-set, and yields an exact result

also for points with real coordinates.

For the proof of Theorem 5.1.1, we first show a reduction from L8 Closest Pair Decision to

dominance product computation, then we show that the optimization problem can be solved de-

terministically by executing the decision procedure only Oplognq times.

Theorem 5.1.2. L8 Closest Pair can be solved by a randomized algorithm that runs in OpDP pn, dqq

expected time.

Theorem 5.1.3. For points with integer coordinates from r´M,M s, L8 Closest Pair can be solved

by a deterministic algorithm that runs in rO
`

mintMnωp1,r,1q, DP pn, dqu
˘

time.

From Theorem 5.1.3 we obtain that for n points in Rn with small integer coordinates we can

solve the optimization problem in Opnωq time, which is a significant improvement compared to the

general case from Theorems 5.1.1 and 5.1.2.

Additionally, we give a coherent spelled-out runtime analysis for obtaining the best bounds

for DP pn, dq, for the entire range d “ nr, where 0 ď r ď 1.056, using rectangular matrix multi-

plications. We demonstrate the use of our analysis by plugging into it the improved bounds for

rectangular matrix multiplication by Le Gall [124], resulting in the bounds given below. Recently,

Le Gall and Urrutia [126] reported further improvements on the bounds given in [124]. Their new

bounds can be plugged into our analysis to give approximately 0.01 improvements on the exponents

given below.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 73

Theorem 5.1.4. Given a set S of n points p1, . . . , pn in Rd, the dominance product of S can be

computed in OpDP pn, dqq time, where

DP pn, dq ď

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

d0.697n1.896 ` n2`op1q if d ď n
ω´1

2 ď n0.687

d0.909n1.75 if n0.687 ď d ď n0.87

d0.921n1.739 if n0.87 ď d ď n0.963

d0.931n1.73 if n0.963 ď d ď n1.056 .

In particular, we obtain that DP pn, nq “ n2.6598 (using a more precise calculation), which

improves Yuster’s Opn2.684q time bound. As mentioned above, this bound can be slightly improved,

using the new rectangular matrix multiplication bounds of Le Gall and Urrutia [126].

5.2 Dominance Product

Recall the dominance product problem: given n points p1, . . . , pn in Rd, we want to compute a

matrix D such that for each i, j P rns,

Dri, js “
ˇ

ˇ

ˇ
tk | pirks ď pjrksu

ˇ

ˇ

ˇ
.

It is easy to see that the matrix D can be computed naively in Opdn2q time. Note that, in terms

of decision tree complexity, it is straightforward to show that Opdn lognq pairwise comparisons

suffice for computing the dominance product of n points in Rd. However, the actual best known

time bound to solve this problem is significantly larger than its decision tree complexity bound.

The first who gave a truly subcubic algorithm to compute the dominance product of n points in

Rn is Matoušek [129]. We first outline his algorithm, and then present our extension and improved

runtime analysis.

Theorem 5.2.1 (Matoušek [129]). Given a set S of n points in Rn, the dominance matrix for S

can be computed in Opn
3`ω

2 q “ Opn2.687q time.

Proof. For each j P rns, sort the n points by their j-th coordinate. This takes a total of Opn2 lognq

time. Define the j-th rank of point pi, denoted as rjppiq, to be the position of pi in the sorted

list for coordinate j. Let s P rlogn, ns be a parameter to be determined later. Define n{s pairs

(assuming for simplicity that n{s is an integer) of nˆn Boolean matrices pA1, B1q, . . . , pAn{s, Bn{sq

as follows:

Akri, js “

$

’

&

’

%

1 if rjppiq P rks, ks` sq

0 otherwise,
Bkri, js “

$

’

&

’

%

1 if rjppiq ě ks` s

0 otherwise,

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 74

for i, j P rns. Put Ck “ Ak ¨ B
T
k . Then Ckri, js equals the number of coordinates t such that

rtppiq P rks, ks` sq, and rtppjq ě ks` s.

Thus, by letting C “
řn{s
k“1 Ck, we have that Cri, js is the number of coordinates t such that

pirts ď pjrts and trtppiq{su ă trtppjq{su.

Next, we compute a matrix E such that Eri, js is the number of coordinates t such that

pirts ď pjrts and trtppiq{su “ trtppjq{su. Then D :“ C ` E is the desired dominance matrix.

To compute E, we use the n sorted lists we computed earlier. For each pair pi, jq P rns ˆ rns,

we retrieve q :“ rjppiq. By reading off the adjacent points that precede pi in the j-th sorted list

in reverse order (i.e., the points at positions q´ 1, q´ 2, etc.), and stopping as soon as we reach a

point pk such that trjppkq{su ă trjppiq{su, we obtain the list pi1 , . . . , pil of l ď s points such that

pixrjs ď pirjs and trjppiq{su “ trjppixq{su. For each x “ 1, . . . , l, we add a 1 to Erix, is. Assuming

constant time lookups and constant time probes into a matrix (as is standard in the Real RAM

model), this entire process takes only Opn2sq time. The runtime of the above procedure is therefore

Opn2s` n
s ¨ n

ωq. Choosing s “ n
ω´1

2 , the time bound becomes Opn 3`ω
2 q.

Yuster [158] has slightly improved this algorithm to run in Opn2.684q time, by using rectangular

matrix multiplication.

5.2.1 Generalized and Improved Bounds

We extend Yuster’s idea to obtain bounds for dimension d “ nr, for the entire range r ą 0, and,

at the same time, give an improved time analysis, using the recent bounds for rectangular matrix

multiplications of Le Gall [124] coupled with an interpolation technique. This analysis is not

trivial, as Le Gall’s bounds for ωp1, r, 1q are obtained by solving a nonlinear optimization problem,

and are only provided for a few selected values of r (see Table 1 in [124]). Combining Le Gall’s

exponents with an interpolation technique, similar to the one used by Huang and Pan [109], we

obtain improved bounds for all values d “ nr, for any r ą 0.

Note that the matrices Ak and Bk, defined above, are now n ˆ d matrices. Thus, the sum C

defined earlier, can be viewed as a product of block matrices

C “
”

A1 A2 ¨ ¨ ¨ An{s

ı

¨

»

—

—

—

—

—

—

–

BT1

BT2
...

BTn{s

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Thus, to compute C we need to multiply an nˆpdn{sq matrix by a pdn{sqˆn matrix. Computing

E in this case can be done exactly as in Matoušek’s algorithm, in Opndsq time.

Consider first the case where d is small; concretely, d ď n
ω´1

2 . In this case we compute C using

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 75

r ω ζ
r0 “ 1.0 ω0 “ 2.372864 ζ0 “ 0.6865
r1 “ 1.1 ω1 “ 2.456151 ζ1 “ 0.7781
r2 “ 1.2 ω2 “ 2.539392 ζ2 “ 0.8697
r3 “ 1.3 ω3 “ 2.624703 ζ3 “ 0.9624
r4 “ 1.4 ω4 “ 2.711707 ζ4 “ 1.0559

Table 5.1: The relevant entries from Le Gall’s table (Table 1 in [124]), the value for ω0 is taken
from [125]. The dominance product can be computed in Opnωiq time, for dimension di “ nζi .

the following result by Huang and Pan.

Lemma 5.2.2 (Huang and Pan [109]). Let α “ sup

0 ď r ď 1 | wp1, r, 1q “ 2 ` op1q
(

. Then for

all nα ď m ď n, one can multiply an nˆm matrix with an mˆn matrix in time O
´

m
ω´2
1´αn

2´ωα
1´α

¯

.

Huang and Pan [109] showed that α ą 0.294. Recently, Le Gall [124] improved the bound on

α to α ą 0.302. By plugging this into Lemma 5.2.2, we obtain that multiplying an nˆm matrix

with an mˆ n matrix, where nα ď m ď n, can be done in time Opm0.535n1.839q.

From the above, computing C and E can be done in O
`

pdn{sq0.535n1.839 ` dns
˘

time. By

choosing s “ n0.896{d0.303, the runtime is asymptotically minimized, and we obtain the time

bound Opd0.697n1.896q. This time bound holds only when nα ă n0.302 ď dn{s ď n, which yields

the time bound

Opd0.697n1.896 ` n2`op1qq, for d ď npω´1q{2 ď n0.687.

We now handle the case d ą npω´1q{2. Note that in this case, dn{s ą n (for s as above),

thus, we cannot use the bound from Lemma 5.2.2. Le Gall [124] gives a table (Table 1 in [124])

of values r (he refers to them as k), including values of r ą 1 (which are those we need), with

various respective exponents ωp1, r, 1q. We will confine ourselves to the given bounds for the values

r1 “ 1.1, r2 “ 1.2, r3 “ 1.3, and r4 “ 1.4. We denote their corresponding exponents ωp1, ri, 1q by

ω1 ď 2.456151, ω2 ď 2.539392, ω3 ď 2.624703, ω4 ď 2.711707

respectively. The exponent for r0 “ 1 is ω0 “ ω ď 2.372864 (see [125,155]).

The algorithm consists of two parts. For a parameter s, that we will fix shortly, the cost of

computing C “ A ¨ BT is O pnωr q, where ωr is a shorthand notation for ωp1, r, 1q, and where

nr “ dn{s, and the cost of computing E is Opndsq “ O
`

s2nr
˘

. Dropping the constants of

proportionality, and equating the two expressions, we choose

s “ npωr´rq{2, that is, d “ snr´1 “ npωr`rq{2´1 “ nζr ,

for ζr “ pωr ` rq{2´ 1. Put ζi “ ζri , for the values r0, . . . , r4 mentioned earlier; see Table 5.1.

Now if we are lucky and d “ nζi , for i “ 0, 1, 2, 3, 4, then the overall cost of the algorithm is

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 76

ζmin ζmax u v
0.687 0.87 0.909 1.75
0.87 0.963 0.921 1.739
0.963 1.056 0.931 1.73

Table 5.2: The time bound for computing dominance product for n points in dimension nζmin ď

d ď nζmax is O pdunvq.

Opnωiq. For in-between values of d, we need to interpolate, using the following bound, which is

derived in the earlier studies (see, e.g., Huang and Pan [109]), and which asserts that, for a ď r ď b,

we have

ωr ď
pb´ rqωa ` pr ´ aqωb

b´ a
. (5.1)

That is, given d “ nζ , where ζi ď ζ ď ζi`1, for some i P t0, 1, 2, 3u, the cost of the algorithm will

be O pnωr q, where r satisfies

ζ “ ζr “
ωr ` r

2 ´ 1.

Substituting the bound for ωr from (5.1), with a “ ri and b “ ri`1, we have

pri`1 ´ rqωi ` pr ´ riqωi`1

ri`1 ´ ri
` r “ 2pζ ` 1q.

Eliminating r, we get

r “
2pζ ` 1qpri`1 ´ riq ´ ri`1wi ` riwi`1

wi`1 ` ri`1 ´ wi ´ ri
, (5.2)

and the cost of the algorithm will be O pnωr q, where

ωr ď
pri`1 ´ rqωi ` pr ´ riqωi`1

ri`1 ´ ri
. (5.3)

Note that r is a linear function of ζ, and so is ωr. Writing ωr “ uζ ` v, the cost is

O pnωr q “ O
`

nuζ`v
˘

“ O pdunvq .

The values of u and v for each of our intervals are given in Table 5.2. (The first row covers

the two intervals 1.0 ď r ď 1.1 and 1.1 ď r ď 1.2, as the bounds happen to coincide there.) See

also Theorem 5.1.4 in Section 5.1.1. We have provided explicit expressions for DP pn, dq only for

d ď nζ4 “ n1.056, which includes the range d ď n, which is the range one expects in practice.

Nevertheless, the recipe that we provide can also be applied to larger values of d, using larger

entries from Le Gall’s table [124]. As mentioned earlier, the exponents we obtained for DP pn, dq

can be even slightly further improved by approximately 0.01, by plugging into our analysis the

recent new bounds for rectangular matrix multiplication of Le Gall and Urrutia [126] (see Table 3

in [126]).

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 77

5.3 Reducing L8 Closest Pair Decision to Dominance Product

Recall that, given a set S of n points p1, . . . , pn in Rd, the L8 Closest Pair problem is to find a pair

of points ppi, pjq, such that i ‰ j and }pi ´ pj}8 “ min`‰mPrns }p` ´ pm}8. The corresponding

decision version of this problem is to determine whether there is a pair of distinct points ppi, pjq

such that }pi ´ pj}8 ď δ, for a given δ ą 0.

Naively, we can compute all the distances between every pair of points in Opn2dq time, and

choose the smallest one. However, as we see next, a significant improvement can be achieved, for

any d “ nr, for any r ą 0.

Specifically, we first obtain the following theorem.

Theorem 5.3.1. Given a parameter δ ą 0, and a set S of n points p1, . . . , pn in Rd, the set of all

pairs ppi, pjq with }pi ´ pj}8 ď δ, can be computed in OpDP pn, dqq time.

Proof. First, we note the following trivial but useful observation (also noted in Section 4.5).

Observation 5.3.2. For a pair of points pi, pj P Rd, }pi ´ pj}8 ď δ ðñ pirks ď pjrks ` δ and

pjrks ď pirks ` δ, for every coordinate k P rds.

Indeed, a pair of points ppi, pjq satisfies }pi ´ pj}8 “ maxkPrds |pirks ´ pjrks| ď δ ðñ for

every coordinate k P rds, |pirks ´ pjrks| ď δ. The last inequalities hold iff pirks ´ pjrks ď δ and

pjrks ´ pirks ď δ, or, equivalently, iff pirks ď pjrks ` δ and pjrks ď pirks ` δ, for each k P rds.

Although the rephrasing in the observation is trivial, it is crucial for our next step. It can be

regarded as a (simple) variant of Fredman’s trick (see Section 2.2 and [92]).

For every i P rns we create a new point pn`i “ pi` pδ, δ, . . . , δq. Thus in total, we now have 2n

points. Concretely, for every i P rns, we have the points

pi “
`

pir1s, pir2s, . . . , pirds
˘

,

pn`i “
`

pir1s ` δ, pir2s ` δ, . . . , pirds ` δ
˘

.

We compute the dominance matrix Dδ for these 2n points, using the algorithm from Section 5.2.1.

By Observation 5.3.2, a pair of points ppi, pjq satisfies

}pi ´ pj}8 ď δ ðñ pDδri, n` js “ dq ^ pDδrj, n` is “ dq ,

so we can find all these pairs in Opn2q additional time. Clearly, the runtime is determined by

the time bound of computing the dominance matrix Dδ (which is at least quadratic), that is,

OpDP pn, dqq.

The proof of Theorem 5.3.1 shows that solving the L8 Closest Pair Decision is not harder than

computing the dominance matrix for n points in Rd.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 78

5.4 Solving the Optimization Problem

The algorithm from Theorem 5.3.1 solves the L8 Closest Pair Decision problem. It actually gives

a stronger result, as it finds all pairs of points ppi, pjq such that }pi ´ pj}8 ď δ. We use this

algorithm in order to solve the optimization problem L8 Closest Pair.

As a “quick and dirty” solution, one can solve the optimization problem by using the algorithm

from Theorem 5.3.1 to guide a binary search over the diameter D of the input point set, which is at

most twice the largest absolute value of the coordinates of the input points. If the coordinates are

integers then we need to invoke the algorithm from Theorem 5.3.1OplogDq times. If the coordinates

are reals, we invoke it OpBq times for B bits of precision. However, the dependence on D makes

this method weakly polynomial, and, for real coordinates, only yields an approximation. As we

show next, this naive approach can be replaced by strongly-polynomial algorithms, a deterministic

one that runs in OpDP pn, dq lognq time, and a randomized one that runs in OpDP pn, dqq expected

time.

5.4.1 Strongly-Polynomial Subcubic Algorithms

Theorem 5.4.1. Given a set S of n points p1, . . . , pn in Rd, the L8 Closest Pair problem can be

solved for S in OpDP pn, dq lognq time.

Proof. Since the distance between the closest pair of points, say pi, pj , is

δ0 “ }pi ´ pj}8 “ max
kPrds

ˇ

ˇpirks ´ pjrks
ˇ

ˇ,

it is one of the Opn2dq values p`rks ´ pmrks, `,m P rns, k P rds. Our goal is to somehow se-

arch through these values, using the decision procedure (i.e., the algorithm from Theorem 5.3.1).

However, enumerating all these values takes Ωpn2dq time, which is too expensive, and pointless

anyway, since by having them, the closest pair can be found immediately. Instead, we proceed in

the following more efficient manner.

For each k P rds, we sort the points of S in increasing order of their k-th coordinate. This

takes Opdn lognq time in total. Let
´

p
pkq
1 , . . . , p

pkq
n

¯

denote the sequence of the points of S sorted

in increasing order of their k-th coordinate.1 For each k, let M pkq be an nˆ n matrix, so that for

i, j P rns, we have

M pkqri, js “ p
pkq
i rks ´ p

pkq
j rks.

We view the row indices from bottom to top, i.e., the first row is the bottommost one, and the

column indices from left to right. We are in fact interested only in the upper triangular portion of

M pkq, where its elements are positive, but for simplicity of presentation, we ignore this issue.
1Note the slight abuse of notation, as the order of the indices in the sorted sequence

´

p
pkq
1 , . . . , p

pkq
n

¯

depends on
k.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 79

Observe that each row of M pkq is sorted in decreasing order and each column is sorted in in-

creasing order. Under these conditions, the selection algorithm of Frederickson and Johnson [91]

can find the t-th-smallest element of M pkq, for any 1 ď t ď n2, in Opnq time.2 (Simpler algo-

rithms for this selection problem that achieve the same runtime were given later by Mirzaian and

Arjomandi [131], and very recently also by Kaplan, Kozma, Zamir, and Zwick [115], using a more

elegant and efficient technique.)

Note that we do not need to explicitly construct the matrices M pkq, this will be too expensive.

The bound of Frederickson-Johnson’s algorithm holds as long as each entry of M pkq is accessible

in Op1q time, like in our case.

We use this method to conduct a simultaneous binary search over all d matrices M pkq to find

δ0. At each step of the search we maintain two counters Lk ď Hk, for each k. Initially Lk “ 1 and

Hk “ n2. The invariant that we maintain is that, at each step, δ0 lies in between the Lk-th and

the Hk-th smallest elements of M pkq, for each k.

Each binary search step is performed as follows. We compute rk “ tpLk`Hkq{2u, for each k, and

apply the Frederickson-Johnson algorithm to retrieve the rk-th smallest element of M pkq, which we

denote as δk, in total time Opndq. We give δk the weight Hk ´ Lk ` 1, and compute the weighted

median δmed of tδ1, . . . , δdu. We run the L8 Closest Pair Decision procedure of Theorem 5.3.1

on δmed. Suppose that it determines that δ0 ď δmed. Then for each k for which δk ě δmed we

know that δ0 ď δk, so we set Hk :“ rk and leave Lk unchanged. Symmetric actions are taken

if δ0 ą δmed. In either case, we remove roughly one quarter of the candidate differences; that is,

the sum
ř

kPrds pHk ´ Lk ` 1q decreases by roughly a factor of 3{4. Hence, after Oplognq steps,

the sum becomes Opdq, and a straightforward binary search through the remaining values finds δ0.

The overall running time is

Opdn logn`DP pn, dqplogn` log dqq.

Since in our setting d is polynomial in n, and nd ! DP pn, dq, we obtain that the overall runtime

is OpDP pn, dq lognq. This completes the proof of Theorem 5.1.1.

Randomized Algorithm. Using randomization, we can improve the time bound of the pre-

ceding deterministic algorithm to equal the time bound of computing the dominance product

OpDP pn, dqq in expectation, by using a randomized optimization technique of Chan [52]. Among

the problems for which this technique can be applied, Chan specifically addresses the Closest Pair

problem.

Theorem 5.4.2 (Chan [52]). Let U be a collection of objects. If the Closest Pair Decision problem

can be solved in OpT pnqq time, for an arbitrary distance function d : U ˆ U Ñ R, then the
2Simpler algorithms can select the t-th-smallest element in such cases in Opn lognq time, which is also sufficient

for our approach.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 80

Closest Pair problem can be solved in OpT pnqq expected time, assuming that T pnq{n is monotone

increasing.

We refer the reader to [52], for the proof of Theorem 5.4.2. By Theorem 5.3.1, L8 Clo-

sest Pair Decision can be solved in OpDP pn, dqq time. Clearly, DP pn, dq{n is monotone increasing

in n. Hence, by Theorem 5.4.2, we obtain a randomized algorithm for L8 Closest Pair that runs

in OpDP pn, dqq expected time, as stated in Theorem 5.1.2.

5.5 A Faster Algorithm for L8 Closest Pair with Bounded

Integer Coordinates

A considerable part of the algorithm from the previous section is the reduction to computing a

suitable dominance matrix. The algorithms for computing dominance matrices given in Section 5.2

do not make any assumptions on the coordinates of the points, and support real numbers. When

the coordinates are bounded integers, we can improve the algorithms. In particular, for n points in

Rn with small integer coordinates we can solve the optimization problem in Opnωq time, which is a

significant improvement compared to the Opn2.6598q time bound of our previous algorithm for this

case. As for integer coordinates that are bounded by a constant, the L8-diameter of the points is

also a constant (bounded by twice the largest coordinate), it follows that one can use the decision

procedure to (naively) guide a binary search over the diameter in constant time. Our improvement

is based on techniques for computing pmin,`q-matrix multiplication over integer-valued matrices.

Theorem 5.5.1. Let S be a set of n points p1, . . . , pn in Rd such that d “ nr for some r ą 0, and

for all i P rns, k P rds, pirks is an integer in r´M,M s. Then the L8 closest pair can be computed

in
rO
´

min
!

Mnωp1,r,1q, DP pn, dq
)¯

time.

We first define pmax,`q-product and pmin,`q-product over matrices.

Definition 5.5.2 (Distance products of matrices). Let A be an nˆm matrix and B be an mˆn

matrix. The pmax,`q-product of A and B, denoted by A‹B, is the nˆn matrix C whose elements

are given by

cij “ max
1ďkďm

taik ` bkju, for i, j P rns.

Similarly, the pmin,`q-product of A and B denoted by A˚B is the nˆn matrix C 1 whose elements

are given by

c1ij “ min
1ďkďm

taik ` bkju, for i, j P rns.

We refer to either of the pmin,`q-product or the pmax,`q-product as a distance product.

CHAPTER 5. HIGH DIMENSIONAL CLOSEST PAIR AND DOMINANCE PRODUCT 81

The distance product of an n ˆ m matrix by an m ˆ n matrix can be computed naively in

Opn2mq time. When m “ n, the problem is equivalent to the APSP (all pairs shortest paths)

problem in a directed graph with real edge weights, and the fastest algorithm known is a recent

one by Chan and Williams [57] that runs in O
´

n3{2
?

Ωplognq
¯

time. It is a prominent long-

standing open problem whether a truly subcubic algorithm for this problem exists. However, when

the entries of the matrices are integers, we can convert distance products of matrices into standard

algebraic products. We use a technique by Zwick [159].

Lemma 5.5.3 (Zwick [159]). Given an nˆm matrix A “ taiju and an mˆ n matrix B “ tbiju

such that m “ nr for some r ą 0, and all the elements of both matrices are integers from r´M,M s,

their pmin,`q-product C “ A ˚B can be computed in rOpMnωp1,r,1qq time.

With minor appropriate modifications, the pmax,`q-product of matrices A and B can be

computed within the same time as in Lemma 5.5.3.

We now give an algorithm for computing all-pairs L8 distances, by using the fast algorithm

for computing pmax,`q-product over bounded integers.

Lemma 5.5.4. Let S be a set of n points p1, . . . , pn in Rd, such that d “ nr for some r ą 0, and

for all i P rns, k P rds, the coordinate pirks is an integer from the interval r´M,M s. Then the

L8-distances between all pairs of points ppi, pjq from S can be computed in rOpMnωp1,r,1qq time.

Proof. We create the nˆ d matrix A “ taiku and the dˆ n matrix B “ p´AqT “ tbkiu, where

aik “ pirks, for i P rns, k P rds,

bki “ ´pirks, for i P rns, k P rds.

Now we compute the pmax,`q-product C “ A ‹ B. The matrix L of all-pairs L8-distances is

then easily seen to be

Lri, js “ max

Cri, js, Crj, is
(

“ }pi ´ pj}8 ,

for every pair i, j P rns.

Clearly, the runtime is determined by computing the pmax,`q-product C “ A ‹ B. This is

done as explained earlier, and achieves the asserted running time.

Consequently, by taking the minimum time bound from the algorithm above, and the (deter-

ministic) algorithm from Section 5.3, we obtain that for points in Rd with integer coordinates from

r´M,M s, where d “ nr for some r ą 0, we can solve the L8 Closest Pair in the time stated in

Theorem 5.1.3,
rO
´

min
!

Mnωp1,r,1q, DP pn, dq
)¯

.

Chapter 6

Diameter Spanners

82

CHAPTER 6. DIAMETER SPANNERS 83

6.1 Background

In the area of graph sparsification, the notion of a spanner (also known as distance spanner) refers

to a subgraph that approximately preserves all the pairwise distances between the vertices of the

original graph. Formally, given an undirected (possibly weighted) graph G “ pV,Eq, the subgraph

H “ pV,EH Ď Eq is a t-spanner of G iff for every pair of vertices u, v P V , dHpu, vq ď t ¨ dGpu, vq,

where dHpu, vq and dGpu, vq are the distances between u and v in H and G, respectively (’distance’

means the length of the shortest path). The parameter t is referred to as the stretch factor of H.

Given an undirected graph G and a stretch factor t, a “good t-spanner” of G refers to a t-spanner

that has a significantly smaller (by a polynomial factor) set of edges than G has (i.e., significantly

sparser than G).

Spanners were first introduced and studied in the 80s [22,133,134]. Althöfer et al. [15] showed

that any undirected weighted graph with n vertices has a p2k´1q-spanner of with Opn1`1{kq edges,

for any integer k ą 0. Assuming a widely-believed girth conjecture of Erdős [84], this stretch-size

trade-off is essentially optimal.

Besides being theoretically interesting, “good spanners” are known to have numerous applica-

tions in different areas of computer science, such as distributed systems, communication networks

and efficient routing schemes [16,69,70,96,97,135,141,147], motion planning [68,73], approximating

shortest paths [66,67,79], and distance oracles [30,148].

For directed graphs, the notion of spanners is far less understood. This is because we cannot

have sparse spanners for general directed graphs. Even when the underlying graph is strongly-

connected, there exists graphs with Ωpn2q edges such that excluding even a single edge from the

graph results in a spanner with a stretch as high as the diameter of G, i.e., as maxu,vPV dGpu, vq (if

the graph is not fully connected then the diameter is 8). In such a scenario, for directed graphs,

a natural direction to study is the construction of sparse subgraphs that approximately preserves

the graph diameter. This property is captured by the notion of a t-diameter spanner.

Diameter Spanner: Given a directed graph G “ pV,Eq and a stretch factor t ą 0, a subgraph

H “ pV,EH Ď Eq is defined to be a t-diameter spanner iff diampHq ď rt¨diampGqs, where diampHq

and diampGq denote the diameter of H and G, respectively.

For t “ 2 it is easy to construct such H with Opnq edges, for the unweighted case, by computing

the union of two BFS trees from some vertex v of the graph, one BFS tree is computed by taking

only the outgoing edges from the nodes it reaches, and the other BFS tree is computed by taking

only the ingoing edges. If G has edge-weights from the interval r1,W s, we can replace every BFS

computation with Dijkstra’s algorithm to compute ‘forward’ and ‘backward’ shortest-path trees

from v. It is an easy exercise to show that this construction results in a 2-diameter spanner. This

brings us to the following central question.

Question. Given a directed graph G “ pV,Eq, and a stretch factor t ă 2, can we construct a

CHAPTER 6. DIAMETER SPANNERS 84

t-diameter spanner H “ pV,EH Ă Eq? If so, how small can we make |EH |? and what is the

trade-off between t and |EH |?

In this chapter we tackle the question above, by showing several constructions of t-diameter

spanners for various t ă 2. We believe that extremal-distance spanners are interesting mathema-

tical objects in their own right. Nevertheless, such a sparsification of graphs suffices for many of

the original applications of the well-studied standard graph spanners, such as in communication

networks, facility location problem, routing, etc. In particular, diameter spanners with a sparse

set of edges are good candidates for backbone networks [96].

6.2 Our Results and Related Works

The girth conjecture of Erdős [84] implies that there are undirected graphs on n vertices, for

which any p2k ´ 1q-spanner will require Ωpn1`1{kq edges. This conjecture has been proved for

k “ 1, 2, 3, 5 [154], and is widely believed to be true for any integer k. Thus, assuming the girth

conjecture, one cannot expect better size-stretch trade-offs.

Althöfer et al. [15] were the first to show that any undirected weighted graph with n vertices

has a p2k ´ 1q-spanner of size Opn1`1{kq. The lower bound mentioned above implies that the

Opn1`1{kq size-bound of this spanner is essentially optimal. Althöfer et al. gave an algorithm to

compute such a spanner, and subsequently, a long line of works have studied the question of how

fast can we compute such a spanner, until Baswana and Sen [29] gave a linear-time algorithm.

A c-additive spanner of an undirected unweighted graph G is a subgraph H that preserves

distances up to an additive constant c. That is, for any pair of nodes u, v in G it holds that

dHpv, uq ď dGpv, uq ` c. This type of spanners were also extensively studied [14, 28, 62, 82]. For

example, Baswana, Kavitha, Mehlhorn, and Pettie [28] showed how to construct a 6-additive

spanner of size Opn4{3q. It was only recently that Abboud and Bodwin [1] proved that the 4{3

constant in the exponent of the Opn4{3q-size bound is tight, for any additive constant c.

Since for directed graphs distance spanners are impossible, the roundtrip distance metric was

proposed. The roundtrip-distance between two vertices u and v is the distance from v to u plus

the distance from u to v. Roditty, Thorup, and Zwick [141] presented the notion of roundtrip

spanners for directed graphs. A roundtrip spanner of a directed graph G is a sparse subgraph H

that approximately preserves the roundtrip distance between every pair of nodes v and u.

The question of finding the sparsest spanner of a given graph was shown to be NP-Hard by

Peleg and Schäffer [133], in the same work that the graph spanner notion was introduced.

Diameter spanners were mentioned by Elkin and Peleg [80, 81], but in the context of approx-

imation algorithms for finding the sparsest diameter spanner (a problem known to be NP-Hard).

To the best of our knowledge, our work is the first to focus on the existence of various sparse (i.e.,

with ! n2 edges) diameter spanners, for directed graphs.

CHAPTER 6. DIAMETER SPANNERS 85

Our Results

Theorem 6.2.1. Given an unweighted directed graph G “ pV,Eq with n vertices, there exists a

p3{2q-diameter spanner H “ pV,EH Ď Eq with at most Opn3{2?lognq edges. If G is edge-weighted

from the interval r1,W s , then H satisfies diampHq ď rp3{2qdiampGqs `W . Such a subgraph H

can be computed in expected rOpm
?
nq time with high probability.

In Section 6.4.1 we construct an undirected unweighted graph with Θpn2q edges, such that

even removing a single edge will increase the diameter by the factor 3{2. Thus, in general, the

p3{2q-factor cannot be improved (even for undirected graphs). However, this example uses a graph

with diameter 2. Nevertheless, in [65] we show that the size-stretch trade-off from Theorem 6.2.1

is tight (up to polylogarithmic factors) even for directed unweighted graphs with diameter that is

polynomial in n.

For directed graphs with diameter op
a

n{ lognq, we give a construction of a p5{3q-diameter

spanner of size smaller than that in Theorem 6.2.1, as given in the following theorem.

Theorem 6.2.2. Given an unweighted directed graph G “ pV,Eq with n vertices and diameter D,

There exists a p5{3q-diameter spanner H “ pV,EH Ď Eq with at most O
´

D1{3n4{3 log2{3 n
¯

edges.

If G is edge-weighted from the interval r1,W s, then H satisfies diampHq ď rp5{3qDs`W . Such a

subgraph H can be computed in expected rOpmn1{3pD1{3 ` pn{Dq1{3qq time with high probability. 1

In [65] we show an Ω
`

n4{3D1{3˘ lower bound for the number of edges of a diameter spanner

H “ pV,EH Ď Eq such that diampHq ă t5{3uD ´ 1, for directed unweighted graphs, even with

diameter that is polynomial in n.

Additionally, we give a generalized diameter spanner construction, which can be used to obtain

either a diameter spanner with arbitrarily low stretch or a diameter spanner with arbitrarily small

size, as described in the following theorem.

Theorem 6.2.3. Given an unweighted directed graph G “ pV,Eq with n vertices, for any δ, ε P

r0, 1s, we can compute a subgraph H “ pV,EH Ď Eq satisfying one of the following. Either

1. H is a p1` δq-diameter spanner of size Opn2´ε log1´ε nq, or

2. H is a p2´ δq-diameter spanner of size Opn1`ε logε nq.

If G is edge-weighted, with weights taken from the interval r1,W s, then the stretch of H will

increase by an additive W term, in addition to the multiplicative stretch factor t, i.e., diampHq ď

rp1` δqdiampGqs`W or diampHq ď rp2´ δqdiampGqs`W . Such a subgraph H can be computed

in expected rO
`

mpnε ` n1`εq
˘

time with high probability.

Note that in Theorem 6.2.3 we require only one of the properties (1) or (2), we do not require

both properties. As will be clear from the proof of Theorem 6.2.3, prior of having the input graph
1Although D appears in the bound on the computation time of H, we do not assume apriori knowledge of D.

CHAPTER 6. DIAMETER SPANNERS 86

G, we have no knowledge of, and no control over which of the two above properties will be the

one that is satisfied by H. A particular interesting corollary of Theorem 6.2.3 arises if we set

δ “ ε “ 1{3. Then we can compute either a p4{3q-diameter spanner with rOpn5{3q edges, or a

p5{3q-diameter spanner with rOpn4{3q edges.

In [65] we also study other types of extremal-distance spanners, such as eccentricity spanners

and radius spanners. Given a graph G “ pV,Eq, the eccentricity of a vertex v P V is the maximum

distance from v to any other vertex in the graph; formally, the eccentricity of v is eccpvq “

maxuPV dGpv, uq. The radius of G is the minimum eccentricity of a vertex in the graph; formally,

the radius of G is minvPV eccpvq. (Note that the diameter of G is maxvPV eccpvq.) An eccentricity

spanner is a subgraph of G that approximately preserves all the eccentricities in G. Similarly, a

radius spanner is a subgraph of G that approximately preserves the radius of G. Additionally, we

show in [65] how to maintain extremal-distance spanners in dynamic settings. We do not include

these results in this thesis and refer the reader to [65] for further details.

6.3 Preliminaries and Techniques

Given a directed graph G “ pV,Eq, let u, v P V and S Ď V . We use the following notations.

• dGpu, vq: the length of the shortest path from vertex u to vertex v in graph G. We sometimes

denote it by dpu, vq, when the context is clear.

• πGpu, vq: the shortest path from vertex u to vertex v in graph G. (We assume that the

vertices are indexed from 1 to n. We break ties by always preferring the vertex with the

smaller index as the next vertex in the path, starting from u and ending in v.)

• diampGq: the diameter of graph G, that is, maxp,qPV dGpp, qq.

• out-bfspuq: an outgoing breadth-first-search (BFS) tree rooted at vertex u, computed by

taking only outgoing edges.

• in-bfspuq: an incoming breadth-first-search (BFS) tree rooted at u, computed by taking only

incoming edges (can be computed by applying out-bfspuq on G with the edges reversed).

• out-bfspu, dq: the tree obtained from out-bfspuq by truncating it at depth d (i.e., contai-

ning only the vertices at the first d levels).

• in-bfspu, dq: the tree obtained from in-bfspuq by truncating it at depth d.

• out-bfspSq (resp., in-bfspSq): the tree obtained from out-bfspSq (resp., in-bfspSq), when

the set S Ď V is a super-node, i.e., the vertices of S are treated as one node, thus they are

all at the first level of out-bfspSq (resp., in-bfspSq) (this can be computed by adding

a dummy vertex r and adding edges from (resp., to) r to (resp., from) all vertices of S,

CHAPTER 6. DIAMETER SPANNERS 87

compute out-bfsprq (resp., in-bfspSq), and delete the vertex r (and its edges) from the

resulting tree).

• dGpS, vq (rep., dGpv, Sq): the length of the shortest path from (resp., to) the set S to (resp.,

from) vertex v in G, when the set S Ď V is a super-node, i.e., the vertices of S are treated

as one node.

• Nout
s puq: the s closest vertices of u in out-bfspuq, where ties are broken arbitrarily.

• N in
s puq: the s closest vertices of u in in-bfspuq, where ties are broken arbitrarily.

• depthpT q: the depth of tree T .

• P pV q: the power-set of V .

In our results, we use an extension of the techniques of Aingworth et al. [14] and of Roditty and

Williams [142]. Both, in their diameter approximation algorithms, first find a hitting-set S Ď V of

size O ppn lognq{sq that hits Nout
s puq and N in

s puq (i.e., S X Nout
s puq ‰ H and S X N in

s puq ‰ H),

for every u P V . We can find such a hitting set deterministically in Opsnq time, using a greedy

approach (for example, using the algorithm in [14]). There is also an easy Monte Carlo algorithm

that runs in Opnq time (independent of s) that finds such a hitting-set with high probability (at

least 1 ´ 1
nc , for some constant c ą 0). This algorithm just samples a subset S Ď V of size

O ppn lognq{sq uniformly at random, see Lemma 6.3.1 below. The advantage of the Monte Carlo

algorithm is that we do not have to know or compute the sets Nout
s puq and N in

s puq over u P V in

advance. This was a crucial idea of Roditty and Williams [142] in improving the runtime (albeit

randomized) of the diameter approximation algorithm of Aingworth et al. [14].

Inspired by recent works of Cairo, Grossi and Rizzi [49] and Backurs et al. [24], we use an

extension of the technique of Roditty and Williams [142]. Instead of finding a hitting-set we find

a dominating set-pair, defined below.

First, we need the following folklore hitting-set lemma.

Lemma 6.3.1. Let S1, . . . , Sn Ď V “ t1, . . . , nu, such that |Si| ě L, for each i P rns. Let c ą 0 be

a constant, and put r “ pnpc` 1q{Lq lnn. Let S Ď V be a random subset of size r (that is, sample

r elements without replacement). Then S is a hitting-set for S1, . . . , Sn with probability at least

1´ n´c.

Proof. The probability for S to miss a particular set Si, for some i P rns, is at most

r
ź

j“1

n´ L´ pj ´ 1q
n´ pj ´ 1q ď p1´ L{nqr ď n´1´c,

where the j-th factor in the product is the probability that the j-th element added to S misses Si.

From the union bound we have that the probability for S to miss at least one of the sets S1, . . . , Sn

CHAPTER 6. DIAMETER SPANNERS 88

is at most n´c.

The following lemma is an immediate corollary of Lemma 6.3.1.

Lemma 6.3.2. Let G “ pV,Eq be an n-vertex directed graph. Let n1, n2 be integers satisfying

n1n2 “ γn logn, for some constant γ ą 1. Let S Ď V be a random subset of size n1. Then,

with high probability (that increases with γ), S has non-empty intersections with N in
n2
pvq and with

Nout
n2
pvq, for each v P V .

We introduce the notion of xh1, h2y-dominating set-pair, which is a generalization of the stan-

dard definition of h-dominating set [106,107].

Definition 6.3.3 (Dominating set-pair). For a directed graph G “ pV,Eq, and a set-pair pS1, S2q P

P pV q ˆ P pV q, we say that pS1, S2q is xh1, h2y-dominating of size-bound xn1, n2y, if |S1| “ Opn1q,

|S2| “ Opn2q, and one of the following conditions holds. Either

1. For each x P V , dGpS1, xq ď h1, or

2. For each x P V , dGpx, S2q ď h2.

S1 is said to be h1-out-dominating if it satisfies condition 1, and S2 is said to be h2-in-dominating

if it satisfies condition 2.

We show that a dominating set-pair can be efficiently computed in directed graphs.

Lemma 6.3.4. Let G “ pV,Eq be a directed unweighted graph G, such that |V | “ n and |E| “ m.

Let δ P r0, 1s, and n1, n2 be integers satisfying n1n2 “ γn logn, for some constant γ ą 1. We can

compute, in time Opmq with high probability, a xtδDu, rp1´ δqDsy-dominating set-pair pS1, S2q P

P pV q ˆ P pV q such that |S1| ď n1, S2 ď n2.

Proof. Let S1 Ď V be a uniformly random subset of V of size n1. Let w P V be a vertex of the

maximum depth in out-bfspS1q (ties are broken arbitrarily), i.e., w is the furthest vertex from S1.

Set S2 :“ N in
n2
pwq, which is computable in Opmq time. By Lemma 6.3.2, with high probability, the

set N in
n2
pwq contains a vertex of S1. If not, then we re-sample S1 and compute w and S2 again. The

number of times we do re-sampling is Op1q with high probability, thus the runtime of computing

pS1, S2q is Opmq with high probability.

Now, if the depth of out-bfspS1q is bounded by δD, then S1 is tδDu-out-dominating, since

for each x P V , dGpS1, xq ď tδDu. Suppose S1 is not tδDu-out-dominating, then in particular

dGpS1, wq ą δD (since w is the furthest vertex from S1), and thus in-bfspw, δDq must have empty

intersection with S1. This is possible only when the vertices of in-bfspw, δDq are fully contained

in N in
n2
pwq, since otherwise it must be that N in

n2
pwq is fully contained in the set of vertices of

in-bfspw, δDq, but this contradicts the fact that N in
n2
pwq “ S2 intersects with S1. Thus, for each

x P V , dGpx, S2q is bounded by depthpin-bfspS2qq ď rdepthpin-bfspwqq ´ δDs ď rD ´ δDs “

rp1´ δqDs.

CHAPTER 6. DIAMETER SPANNERS 89

6.4 Construction of Diameter Spanners

Let G “ pV,Eq be a directed graph with n vertices, m edges, and diameter D. From now on, we

assume that the graph G is strongly connected (and thus m ě n), as otherwise its diameter is 8,

for which finding a t-diameter-spanner is not interesting.

For simplicity, in the following subsections we assume that G is unweighted, but our constructi-

ons support positive (at least 1) edge-weights. If G has edge-weights from the interval r1,W s, we

replace every application of BFS in the proof of Lemma 6.3.4 and in the procedures below with

Dijkstra’s algorithm to compute a shortest-paths tree. In this case, the stretch of the spanner will

only increase by an additive W term (due to the rounding function used in the algorithms), and

the running time will increase by a logn factor. The proofs are analogous to the proofs of the

unweighted case.

In the following subsections, we provide several constructions of diameter spanners for G with

various size-stretch trade-offs.

6.4.1 p3{2q-Diameter Spanner

A construction of a p3{2q-diameter-spanner can be quite easily obtained using a similar technique

to the one used in the p3{2q-approximation algorithm for graph diameter by Roditty and Wil-

liams [142]. As a warm-up for our next diameter spanner constructions, we give here another

construction for a p3{2q-diameter spanner, using the dominating set-pair definition (given above)

and Lemma 6.3.4.

Let pS1, S2q P P pV q ˆ P pV q be a xt 1
2Du, r 1

2Dsy-dominating set-pair obtained by Lemma 6.3.4

by setting δ “ 1{2 and n1 “ n2 “
?
cn logn, for some constant c ą 0.

We set H to be the union of the trees in-bfspsq and out-bfspsq, over all s P S1YS2. Formally,

H :“
ď

sPS1YS2

pin-bfspsq Y out-bfspsqq.

We claim the H is a p3{2q-diameter spanner. To see this, consider two distinct vertices x, y P

V . If S1 is tD{2u-out-dominating, then there exists s P S1 such that dGps, yq ď D{2. Since

dHpx, sq “ dGpx, sq ď D, and dHps, yq “ dGps, yq ď D{2, we have dHpx, yq ď 3D{2. Similarly, if

S2 is rD{2s-in-dominating, then we have dHpx, yq ď r3D{2s. Thus, the diameter of H is at most

r3D{2s.

H is constructed by computing |S1 Y S2| “ Op
?
n lognq BFS trees, each of size Opnq. Thus,

H contains Opn3{2?lognq edges. The runtime for computing H is derived from |S1 Y S2| BFS

computations, plus the runtime for finding the dominating set-pair pS1, S2q, which by Lemma 6.3.4

is Opmq with high probability. Thus in total, the runtime for computing H is Opm|S1 Y S2|q “

Opm
?
n lognq with high probability. This completes the proof of Theorem 6.2.1.

CHAPTER 6. DIAMETER SPANNERS 90

Algorithm 1: p5{3q-Diameter Spanner Construction
Input: G “ pV,Eq;
1. H Ð pV,Hq;
2. pA1, A2q Ð xt2D{3u, rD{3sy-dominating-set-pair of size-bound xα logn, n{αy;
3. pB1, B2q Ð xtD{3u, r2D{3sy-dominating-set-pair of size-bound xn{α, α logny;
4. Add to H the edges of in-bfspA2q and out-bfspB1q;
5. foreach s P A1 YB2 do add to H the edges of in-bfspsq Y out-bfspsq;
6. foreach pu, vq P A2 ˆB1 do add the edges of the shortest path πGpu, vq to H;
7. return H;

In general, the p3{2q-stretch factor cannot be improved (even for undirected graphs), as we can

construct the following undirected graph G “ pV,Eq. Let A “ ta1, . . . , anu, B “ tb1, . . . , bnu, C “

tc1, . . . , cnu be sets of distinct vertices such that V “ A Y B Y C. Let each of the sets A,B,C

be an n-clique (i.e., in each set there is an edge between every pair of vertices). Connect an edge

between ai and bi, for each i P rns. Finally, connect an edge between bi and cj , for each i, j P rns

(i.e., a bi-clique between B and C). Clearly, the number of edges of this graph is Θpn2q and its

diameter is 2 (the longest path is from a vertex in A to a vertex in C). Now, if we remove an edge

pbi, cjq, for any i, j P rns, the diameter increases to 3 due to the shortest-path from ai to cj .

Note that the graph above has diameter 2. Nevertheless, as mentioned earlier, in [65] we show

that the size-stretch trade-off from Theorem 6.2.1 is tight (up to polylogarithmic factors) even for

directed unweighted graphs with diameter that is polynomial in n.

6.4.2 p5{3q-Diameter Spanner

Here we present a construction of a p5{3q-diameter spanner H that is sparser than the p3{2q-

diameter spanner from Theorem 6.2.1 whenever D “ op
a

n{ lognq. This will prove Theorem 6.2.2.

Let α ą 0 be a parameter that we will fix later. The construction of H is presented in

Algorithm 1. We will now prove its correctness.

Consider two distinct vertices x, y P V . If A1 is a t2D{3u-out-dominating set, then dGps, yq ď

t2D{3u for some s P A1. Thus

dHpx, yq ď dHpx, sq ` dHps, yq “ dGpx, sq ` dGps, yq ď D ` t2D{3u “ t5D{3u.

Similarly, if B2 is a r2D{3s-in-dominating set, it can be shown that dHpx, yq ď r5D{3s.

Suppose that neither A1 is t2D{3u-out-dominating nor B2 is r2D{3s-in-dominating. Then, A2

is rD{3s-in-dominating and B1 is tD{3u-out-dominating (by definition of dominating set-pair). So

dGpx,A2q, dGpB1, yq ď rD{3s. Since H contains in-bfspA2q and out-bfspB1q, there must be

sx P A2 and sy P B1 such that dHpx, sxq “ dGpx, sxq “ dGpx,A2q ď rD{3s and dHpsy, yq “

dGpsy, yq “ dGpB1, yq ď rD{3s. Since H contains the shortest path between each pair of vertices

CHAPTER 6. DIAMETER SPANNERS 91

in A2 ˆB1, we obtain that dHpsx, syq “ dGpsx, syq ď D. Therefore,

dHpx, yq ď dHpx, sxq ` dHpsx, syq ` dHpsy, yq “ dGpx, sxq ` dGpsx, syq ` dGpsy, yq ď r5D{3s.

We now analyze the size of H. We added to H the edges of the Opα lognq BFS trees from

Steps 5 and 4, which consist of Opnα lognq edges in total. In Step 6 we added the shortest paths

between all pairs in A2 ˆ B1, which use in total Opn2D{α2q edges. Thus, the total number of

edges in H is Opnα logn ` n2D{α2q. This is minimized when α “ Θ
`

pnD{ lognq1{3
˘

. Therefore,

the total number of edges in H is OpD1{3n4{3 log2{3 nq.

Observe that in order to compute α up to a suitable constant factor, it suffices to have an

estimate of D. We can easily compute a 2-approximation for the diameter D in Opmq time, since

for any arbitrary vertex w P V , D ď depthpin-bfspwqq ` depthpout-bfspwqq ď 2D, and the

depths of in-bfspwq and out-bfspwq are computable in Opmq time.

We now analyze the running time of each step in Algorithm 1. By Lemma 6.3.4, the time to com-

pute the set-pairs pA1, A2q and pB1, B2q from Steps 2 and 3 is Opmq with high probability. Step 4

takes Opmq time. Step 5 and 6 are done by computing in-bfspsq and out-bfspsq, for each vertex

s P A1 YB2 YA2 YB1. Thus, Steps 5 and 6 takes O pm ¨ |A1 YB2 YA2 YB1|q time. Overall, the

total expected runtime of the algorithm is O pmp|A1 YA2 YB1 YB2|qq “ O pmpα logn` n{αqq “
rO
`

mn1{3D1{3 `mn2{3{D1{3˘ “ rO
`

mn1{3pD1{3 ` pn{Dq1{3q
˘

. This completes the proof of Theo-

rem 6.2.2.

As mentioned earlier, in [65] we show an Ω
`

n4{3D1{3˘ lower bound for the size of a diameter

spanner H “ pV,EH Ď Eq that satisfies diampHq ă t5{3uD ´ 1, for directed unweighted graphs

(even for such graphs with a diameter that is polynomial in n).

6.4.3 General (low-stretch or small-size)-Diameter Spanner

Here we generalize the result from Theorem 6.2.1. For any δ, ε P r0, 1s, we can compute in

O
`

mpnε ` n1`εq
˘

time with high probability, a subgraph H “ pV,EH Ď Eq satisfying one of

the following. Either

1. H is a p1` δq-diameter spanner of size Opn2´ε log1´ε nq, or

2. H is a p2´ δq-diameter spanner of size Opn1`ε logε nq.

Let δ, ε P r0, 1s, and use Lemma 6.3.4 to obtain a xtδDu, rp1´δqDsy-dominating set-pair pS1, S2q,

such that |S1| ď pn lognq1´ε, and |S2| ď γpn lognqε, for some constant γ ą 1. (Note that indeed

pn lognq1´εpn lognqε “ γn logn.)

Let H1 (resp., H2) be the union of the trees in-bfspsq and out-bfspsq, for each s P S1 (resp.,

s P S2). The time for computing H1 and H2 is derived from |S1 Y S2| BFS computations, plus

the time for finding the dominating set-pair pS1, S2q, which is in total Opmpn1 ` n2qq time with

CHAPTER 6. DIAMETER SPANNERS 92

high probability, where the constant of proportionality depends on γ. Note that H1 contains

Opn2´ε log1´ε nq edges, and H2 contains Opn1`ε logε nq edges.

Consider any two distinct vertices x, y P V . If S1 is tδDu-out-dominating, then there exists

s1 P S1 such that dGps1, yq ď tδDu. Since dH1px, s1q “ dGpx, s1q ď D, and dH1ps1, yq “ dGps1, yq ď

tδDu, we have dH1px, yq ď tp1 ` δqDu. Similarly, if S2 is rp1 ´ δqDs-in-dominating, then there

exists s2 P S2 such that dGpx, s2q ď rp1 ´ δqDs. Since dH2px, s2q “ dGpx, s2q ď rp1 ´ δqDs

and dH2ps2, yq “ dGps2, yq ď D, we have dH2px, yq ď rp2 ´ δqDs. This completes the proof of

Theorem 6.2.3.

Chapter 7

Conclusions and Open Questions

93

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 94

The main results of this thesis are

1. Improved decision tree for k-SUM and improved algorithm for 3SUM. Following our work, our

decision tree was significantly improved by Kane, Lovett, and Moran [114], and our 3SUM

algorithm was improved by Chan [55] by an additional logn factor.

2. The first subquadratic algorithms for computing Dynamic Time Warping (DTW) and Ge-

ometric Edit Distance (GED) between two point-sequences in R (and also in Rd, for any

constant d, when the underlying metric is polyhedral), breaking the nearly 50 years old qua-

dratic time barrier of these problems. These are currently the best-known algorithms for

these problems.

3. Linear decision trees with near-linear depth for Discrete Fréchet Distance under polyhedral

metrics in Rd, for any constant d.

4. The first strongly-polynomial strongly subcubic algorithm for computing L8 Closest Pair for

n points in Rn, and showing the relation of this problem to computing dominance product.

5. Showing the existence of various sparse diameter spanners with stretch smaller than 2 for

directed graphs, and giving efficient algorithms to construct them.

We conclude this thesis with several open problems, which may be interesting for future work.

7.1 Bringing the Four Russians to Geometry: Can we test

general position in subquadratic time?

In light of the recent 3SUM results stated in Chapter 3, the results of Kane, Lovett and Moran [114],

and of Chan [55], it is natural to ask whether similar improvements can be made for some well

studied 3SUM-Hard problems. Perhaps the most famous one is the 3-Collinearity Testing problem

(3-Collinearity) (also known as general position testing). That is, determining whether there are

three collinear points in a set of n points in the plane. Chan [55] recently showed subquadratic

algorithms for some 3SUM-Hard problems, however, not for 3-Collinearity.

In our algorithms from the results described in Chapters 3 and 4, we start by using the so-called

“Method of the Four Russians” [20], described in Section 2.2. This method can be exploited to

improve algorithms that involve a matrix structure. The basic idea is to decompose an n ˆ n

matrix into pn{gq2 small sub-matrices (boxes), each of size g ˆ g. Then the hard challenge is to

find a way to efficiently solve a corresponding sub-problem in each of these boxes, and obtain the

solution for the original problem by combining the answers from the sub-problems, maintaining an

overall improved runtime. A natural questions is:

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 95

Can we extend this technique for problems that do not involve a matrix structure, such as

various geometric 3SUM-Hard problems in the plane?

Assuming that the input consists of n curves in the plane, our idea is to construct a g-cutting

that decomposes R2 into pn{gq2 disjoint cells, so that each cell is intersected by at most g of the

input curves. This decomposes the original problem into pn{gq2 smaller subproblems, each of size at

most g. This is analogous to decomposing a matrix into small boxes in the standard Four Russians

method. Then, if we can solve each subproblem in opg2q time, we can solve all the subproblems

in subquadratic time. The challenge left is to solve the original problem in subquadratic time, by

using the solutions of the aforementioned subproblems.

3-Collinearity is a particularly interesting problem to tackle, as it is one of the more famous

3SUM-Hard problems, and can be solved in Opn2q time. We recall the problem:

3-Collinearity: Given a set S of n points in R2, decide whether S contains three collinear points.

Often this problem is stated in the following equivalent dual form.

3-Collinearity (dual): Given a set L of n lines in R2, decide whether L contains three concur-

rent lines (i.e., three lines that intersect at a common point).

Towards a subquadratic algorithm for 3-Collinearity. We look at the dual problem. Let L

denote the set of lines dual to the n input points. We fix some small parameter g, and construct

a g-cutting of the plane for L in Opngq time, using the standard techniques of Chazelle and Fried-

man [59] and Chazelle [58]. Specifically, we partition the plane into Opn{gq2 triangles, where each

triangle is intersected by at most g lines of L. Ignoring concurrencies at points on the boundaries

of the triangles of the cutting (which are much easier to detect), each possible concurrency occurs

inside one of these triangles, and therefore this cutting technique gives a partition of the original

problem into small subproblems.

Any tuple of g lines in the plane can be represented by a point in R2g. We thus get a collection

of Opn{gq2 points in R2g, one for each triangle of the cutting, and our goal is to determine whether

one of these points represents a g-tuple with three concurrent lines. Each such concurrency can

be expressed by a quadratic polynomial equation in the coefficients of the three relevant lines. We

thus get a collection F of
`

g
3
˘

quadratic surfaces in R2g, and the goal is to determine whether

any of the Opn{gq2 points lie on one of these surfaces. In other words, our goal is to construct

a point location data structure such that a query to this data structure (by a point in R2g) will

confirm/negate whether there are three lines among the g lines that intersect at a common point.

The data structure is for point location in the arrangement of the Opg3q surfaces in R2g men-

tioned above, whose complexity is easily seen to be bounded by Op22gg6gq. Now we wish to query

this data structure Opn{gq2 times, one query for each cell of the cutting. However, in order to

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 96

obtain an overall subquadratic runtime, each query should take opg2q time, which appears to be a

rather serious bottleneck.

The best known query time for point location among hyperplanes in Rd is given in a recent

algorithm of Ezra, Har-Peled, Kaplan, and Sharir [86], where a query takes Opd3 lognq time, which

improves an algorithm of Meiser [130] with Opd5 lognq query time. If we restrict ourselves to the

linear decision tree model, a recent work of Ezra and Sharir [88] gives an (unconstrained) linear

decision tree with depth Opn2 log2 nq, for point location among n hyperplanes in Rd. In our case

we have quadratic surfaces rather than hyperplanes, but even if the state-of-the-art techniques

mentioned above could be adapted to this case, the query cost for d “ 2g and n “ Θpg3q would

be Opg3 log gq in the uniform model, way too much for our needs. Even in the linear decision tree

model it would be too expensive, as we obtain a bound of Opg2 log gq.

Nevertheless, in our case, since we can take g to be a very small quantity, we can afford to

use a data structure with a huge amount of preprocessing time and storage, much more than the

standard approaches. So our problem now is to construct a point location data structure for these

surfaces, possibly with a very large storage and preprocessing time (even super-exponential in g),

as long as the query time for a point (representing a set of g lines) is only opg2q.

7.2 Sorting X ` Y

Recall the Sorting X ` Y problem discussed in Section 2.2 and in Chapter 3.

Sorting X ` Y : Given two sets X and Y , each of n real numbers, sort

X ` Y “ tx` y | x P X, y P Y u .

A somewhat simpler variant of this problem is

Element Uniqueness in X ` Y : Given two sets X and Y , each of n real numbers, determine

whether all the elements of X ` Y are distinct.

Both problems are known to be 3SUM-Hard, and are also used for basing conditional lower

bounds for other problems (see [27] and [108]), which are therefore classified as “(Sorting X `

Y)-Hard”. As mentioned in Section 2.2, the linear decision tree complexity of Sorting X ` Y

(and Element Uniqueness in X ` Y) was shown to be Opn2q by Fredman [92] in 1976, and in

a recent breakthrough by Kane, Lovett, and Moran [114] this complexity was shown to be only

Opn log2 nq. It is still a prominent long-standing open problem whether these problems can be

solved in opn2 lognq time (see [72]), even for the case X “ Y .

Our 3SUM algorithm and Sorting X ` Y . In our 3SUM algorithm we showed that we

can obtain the sorting permutations of boxes of size logn ˆ logn, that comprise X ` Y , in

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 97

Opn2 log logn{ lognq overall time. Is it possible to pay an additional opplognq2{ log lognq fac-

tor and determine whether all elements in X ` Y are distinct? Note that this is a global question:

resolving element uniqueness in each box separately is not enough.

An additive combinatorics direction. Recently, Chan and Lewenstein [56] presented new al-

gorithms for solving certain non-trivial restricted cases of 3SUM on integers in strongly subquadra-

tic time, by using results from additive combinatorics. Specifically, they developed an algorithmic

framework from a version of the Ballog-Szémeredi-Gowers (BSG) theorem [146], which states:

Theorem 7.2.1 (Ballog-Szémeredi-Gowers [146]). Given sets A,B, S, each of size N , in any

Abelian group, and some parameter α ą 0, such that
ˇ

ˇtpa, bq P AˆB | a` b P Su
ˇ

ˇ ě αN2, there

exist subsets A1 Ď A and B1 Ď B, satisfying |A1|, |B1| “ ΩpαNq, such that |A1`B1| “ Opp1{αq5Nq.

It may be interesting to investigate whether additive combinatorics techniques can be used for

developing an algorithm for deciding whether the elements of X ` X are all distinct, for certain

non-trivial cases of integer inputs. A relevant theorem that might be useful for this purpose is the

following theorem by Brown and Buhler [41], and Roth [143].

Theorem 7.2.2. For every ε ą 0, there exists n0 “ n0pεq with the following property. If A is

an Abelian group of odd order and |A| ą n0, then every subset B Ă A with |B| ą ε|A| contains a

three-term arithmetic progression, i.e., distinct elements x, y, z such that x` y “ 2z.

Very recently, Bloom [35] established the following bound.

Theorem 7.2.3 (Bloom [35]). If A Ă t1, . . . , Nu contains no non-trivial1 three-term arithmetic

progressions then

|A| !
plog logNq4

logN N.

Connection to the problem. Observe that if A contains a three-term arithmetic progression

px, y, zq then not all elements of A ` A are distinct, since x ` z “ y ` y P A ` A. Can one use

this fact in conjunction with Theorem 7.2.3 to develop a faster algorithm for deciding whether all

elements of A`A are distinct, for certain non-trivial cases of integer inputs?

7.3 Additional Classical Quadratic Problems

In addition to the problems mentioned above, there are some fundamental quadratic problems

for which even a polylogarithmic factor improvements are unknown. Since these problems are

fundamental, it is worth trying to break their quadratic time (and sometimes also space) bounds.

We discuss about two of them below.
1A trivial three-term arithmetic progression is one in which all three elements are the same.

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 98

Deterministic optimal binary search tree. We are given a set X “ ta1, . . . , anu of n ordered

elements, and we wish to perform binary searches among them. We are given a set tA1, . . . , AnuY

tB0, . . . , Bnu of 2n`1 probabilities, where Ai is the probability that the search is with element ai,

for each i P rns, and Bi is the probability that the search is with an element between ai and ai`1,

for each i P rn´1s; B0 is the probability of searching with an element strictly less than a0, and Bn
is the probability of searching with an element strictly greater than an. These 2n` 1 probabilities

cover all possible searches, and therefore add up to 1.

The well known optimal binary search tree problem is the optimization problem of finding the

binary search tree that minimizes the expected search time. Gilbert and Moore [98] showed in

1959 a dynamic programming algorithm for this problems that runs in Opn3q time. Knuth [121]

showed in 1971 that their algorithm can be speeded up to run in Θpn2q time, and this currently the

best-known time bound for this problem. Knuth’s primary insight was that the optimality problem

is hereditary, in the sense that if a certain tree is optimal for a given probability distribution, then

its left and right subtrees must also be optimal for their (suitably scaled) appropriate subsets of

the distribution.

Although this problem was not proven to be 3SUM-Hard, there is a reason to believe that this

problem is harder than 3SUM, as Knuth’s algorithm also uses Θpn2q space (no optimum binary

search tree algorithm has been found that uses opn2q space and polynomial time), whereas a

standard quadratic-time algorithm for 3SUM uses only Opnq space.

In view of the recent “quadratic-time breaking algorithms” discussed in this thesis, we propose

two main open questions concerning the optimal binary search tree problem.

1. Can it be solved in polynomial time and opn2q space? is it possible to break the quadratic

space barrier?

2. Does Knuth’s algorithm runs in optimal time? namely, is it possible to break the quadratic

time barrier?

Minimum area triangle. Given a set P of n points in the plane, the minimum-area triangle

problem is to find a triangle T of minimum are, whose vertices are in P (i.e., there is no other such

a triangle whose area is smaller than the area of T). The corresponding decision version of this

problem is to determine whether there exists a triangle of area not larger than a given parameter

K ě 0, whose vertices are in P .

Eppstein, Overmars, Rote, and Woeginger [83] presented a geometric algorithm that uses a dy-

namic programming approach and runs in Opn2q time and uses Opnq space, for finding a minimum-

area triangle. Our question is whether the decision version of this problem can be solved in subqua-

dratic time. Note however, that this problem is 3SUM-Hard, moreover, it is “3-Collinearity-Hard”,

since deciding whether there are three collinear points in P can be done by deciding whether there

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 99

is a triangle of area 0, whose vertices are from P . Thus, a subquadratic-time solution for this

problem immediately implies a subquadratic-time solution for 3-Collinearity. Hence, this question

is better be tackled only if one can first solve 3-Collinearity in subquadratic time, which is the

question given in Section 7.1.

Bibliography

[1] A. Abboud and G. Bodwin. The 4{3 additive spanner exponent is tight. In Proc. 48th Annu.

ACM Sympos. on Theory of Computing (STOC), pages 351–361, 2016.

[2] A. Abboud and K. Bringmann. Tighter connections between formula-sat and shaving logs. In

45th International Colloquium on Automata, Languages, and Programming (ICALP), pages

8:1–8:18, 2018.

[3] A. Abboud, T. D. Hansen, V. V. Williams, and R. Williams. Simulating branching programs

with edit distance and friends: Or: A polylog shaved is a lower bound made. In Proc. 48th

Annu. ACM Sympos. on Theory of Computing (STOC), pages 375–388, 2016.

[4] A. Abboud and K. Lewi. Exact weight subgraphs and the k-SUM conjecture. In Proc. 40th

Int’l Colloq. on Automata, Languages and Programming (ICALP), pages 1–12, 2013.

[5] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic

problems. In Proc. 55th Annu. Sympos. on Foundations of Computer Science (FOCS), pages

434–443, 2014.

[6] A. Abboud, V. V. Williams, and H. Yu. Matching triangles and basing hardness on an

extremely popular conjecture. In Proc. 47th Annu. ACM on Sympos. on Theory of Computing

(STOC), pages 41–50, 2015.

[7] P. K. Agarwal, R. Ben Avraham, H. Kaplan, and M. Sharir. Computing the discrete Fréchet

distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.

[8] P. K. Agarwal, K. Fox, J. Pan, and R. Ying. Approximating dynamic time warping and edit

distance for a pair of point sequences. In Proc. 32nd International Sympos. on Computational

Geometry (SoCG), pages 6:1–6:16, 2016.

[9] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a

matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987.

[10] A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer Algorithms. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1974.

100

BIBLIOGRAPHY 101

[11] O. Aichholzer, F. Aurenhammer, E. D. Demaine, F. Hurtado, P. Ramos, and J. Urrutia. On

k-convex polygons. Comput. Geom., 45(3):73–87, 2012.

[12] N. Ailon and B. Chazelle. Lower bounds for linear degeneracy testing. J. ACM, 52(2):157–

171, 2005.

[13] N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest

neighbors. SIAM J. Comput., 39(1):302–322, 2009.

[14] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and

shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167–

1181, 1999.

[15] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted

graphs. Discrete Comput. Geom., 9(1), 1993.

[16] K. Alzoubi, X. Y. Li, Y. Wang, P. J. Wan, and O. Frieder. Geometric spanners for wireless

ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4):408–421,

2003.

[17] A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jumbled indexing.

In Proc. 41st Int’l Colloq. on Automata, Languages, and Programming (ICALP), pages 114–

125, 2014.

[18] A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom. Mind the gap:

Essentially optimal algorithms for online dictionary matching with one gap. In Proc. 27th

Int’l Sympos. on Algorithms and Computation (ISAAC), pages 12:1–12:12, 2016.

[19] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Commun. ACM, 51(1):117–122, 2008.

[20] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical construction of the

transitive closure of a directed graph. Dokl. Akad. Nauk., 194(11), 1970.

[21] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-

versity Press, 1st edition, 2009.

[22] B. Awerbuch. Communication-time trade-offs in network synchronization. In Proc. 4th Annu.

ACM Sympos. on Principles of Distributed Computing (PODC), pages 272–276. ACM, 1985.

[23] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time

(unless SETH is false). In Proc. 47th Annu. ACM Sympos. on Theory of Computing (STOC),

pages 51–58, 2015.

BIBLIOGRAPHY 102

[24] A. Backurs, L. Roditty, G. Segal, V. V. Williams, and N. Wein. Towards tight approximation

bounds for graph diameter and eccentricities. In Proc. 50th Annu. ACM Sympos. on Theory

of Computing (STOC), pages 267–280, 2018.

[25] I. Baran, E. D. Demaine, and M. Pǎtraşcu. Subquadratic algorithms for 3SUM. Algorithmica,

50(4):584–596, 2008.

[26] L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon. Subquadratic

Algorithms for Algebraic Generalizations of 3SUM. In Proc. 33rd International Symposium

on Computational Geometry (SoCG), pages 13:1–13:15, 2017.

[27] G. Barequet and S. Har-Peled. Polygon containment and translational min-Hausdorff-

distance between segment sets are 3SUM-hard. Int. J. Comput. Geometry Appl., 11(4):465–

474, 2001.

[28] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and (α, β)-spanners.

ACM Trans. Algorithms, 7(1):5:1–5:26, 2010.

[29] S. Baswana and S. Sen. A simple linear time algorithm for computing a p2k ´ 1q-spanner

of Opn1`1{kq size in weighted graphs. In Proc. 30th International Conference on Automata,

Languages and Programming (ICALP), pages 384–396, 2003.

[30] S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in expected

Opn2q time. ACM Trans. Algorithms, 2(4):557–577, 2006.

[31] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM

Sympos. on Theory of Computing (STOC), pages 80–86, 1983.

[32] J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229, 1980.

[33] J. L. Bentley and M. I. Shamos. Divide-and-conquer in multidimensional space. In Proc. of

the 8th Annu. ACM Sympos. on Theory of Computing (STOC), pages 220–230, 1976.

[34] P. Bille and M. Farach-Colton. Fast and compact regular expression matching. Theoretical

Computer Science, 409(3):486–496, 2008.

[35] T. F. Bloom. A quantitative improvement for Roth’s theorem on arithmetic progressions.

Journal of the London Mathematical Society, 2016.

[36] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for

selection. J. Comput. Syst. Sci., 7:448–461, 1973.

[37] D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman,

M. Pǎtraşcu, and P. Taslakian. Necklaces, convolutions, and X + Y. Algorithmica, 69:294–

314, 2014.

BIBLIOGRAPHY 103

[38] K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subqua-

dratic algorithms unless SETH fails. In Proc. 55th IEEE Annu. Sympos. on Foundations of

Computer Science (FOCS), pages 661–670, 2014.

[39] K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string problems

and dynamic time warping. In Proc. 56th Annu. IEEE Sympos. on Foundations of Computer

Science (FOCS), pages 79–97, 2015.

[40] K. Bringmann and W. Mulzer. Approximability of the discrete Fréchet distance. J. Comput.

Geom., 7(2):46–76, 2016.

[41] T. C. Brown and J. P. Buhler. A density version of a geometric Ramsey theorem. J.

Combinatorial Theory, Series A, 32(1):20–34, 1982.

[42] K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is it to walk the

dog? Proc. 23rd Euro. Workshop Comput. Geom., pages 170–173, 2007.

[43] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four soviets walk the dog - with an

application to Alt’s conjecture. pages 1399–1413, 2014.

[44] R. C. Buck. Partition of space. Amer. Math. Monthly, 50:541–544, 1943.

[45] R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in optimization.

Discrete Applied Mathematics, 70(2):95–161, 1996.

[46] R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in optimization.

Discrete Applied Mathematics, 70(2):95 – 161, 1996.

[47] A. Butman, P. Clifford, R. Clifford, M. Jalsenius, N. Lewenstein, B. Porat, E. Porat, and

B. Sach. Pattern matching under polynomial transformation. SIAM J. Comput., 42(2):611–

633, 2013.

[48] E. G. Caiani, A. Porta, G. Baselli, M. Turiel, S. Muzzupappa, F. Pieruzzi, C. Crema, A. Mal-

liani, and S. Cerutti. Warped-average template technique to track on a cycle-by-cycle basis

the cardiac filling phases on left ventricular volume. In Computers in Cardiology, pages

73–76, 1998.

[49] M. Cairo, R. Grossi, and R. Rizzi. New bounds for approximating extremal distances in un-

directed graphs. In Proc. 27th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA),

pages 363–376, 2016.

[50] J. Cardinal, J. Iacono, and A. Ooms. Solving k-SUM using few linear queries. In Proc. 24th

Annu. European Sympos. on Algorithms (ESA), pages 25:1–25:17, 2016.

BIBLIOGRAPHY 104

[51] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Non-

deterministic extensions of the strong exponential time hypothesis and consequences for

non-reducibility. In Proc. ACM Conference on Innovations in Theoretical Computer Science

(ITCS), pages 261–270, 2016.

[52] T. M. Chan. Geometric applications of a randomized optimization technique. Discrete

Comput. Geom., 22(4):547–567, 1999.

[53] T. M. Chan. All-pairs shortest paths with real weights in Opn3{ lognq time. Algorithmica,

50(2):236–243, 2008.

[54] T. M. Chan. Speeding up the four russians algorithm by about one more logarithmic factor.

In Proc. of the 26th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages

212–217, 2015.

[55] T. M. Chan. More logarithmic-factor speedups for 3SUM, (median,+)-convolution, and

some geometric 3SUM-hard problems. In Proc. 29th Annu. ACM-SIAM Sympos. on Discrete

Algorithms (SODA), pages 881–897, 2018.

[56] T. M. Chan and M. Lewenstein. Clustered integer 3SUM via additive combinatorics. In

Proc. 47th Annu. ACM Sympos. on Theory of Computing (STOC), pages 31–40, 2015.

[57] T. M. Chan and R. Williams. Deterministic APSP, orthogonal vectors, and more: Quickly

derandomizing Razborov-Smolensky. In Proc. of the 27th Annu. ACM-SIAM Sympos. on

Discrete Algorithms (SODA), pages 1246–1255, 2016.

[58] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom., 9(2):145–

158, 1993.

[59] B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in

geometry. Combinatorica, 10(3):229–249, 1990.

[60] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algo-

rithmica, 1(2):133–162, 1986.

[61] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1(2):163–

191, 1986.

[62] S. Chechik. New additive spanners. In Proc. 24th Annu. ACM-SIAM Sympos. on Discrete

Algorithms (SODA), pages 498–512, 2013.

[63] S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. E. Tarjan, and V. V. Williams. Better

approximation algorithms for the graph diameter. In Proc. 25th Annu. ACM-SIAM Sympos.

on Discrete Algorithms (SODA), pages 1041–1052, 2014.

BIBLIOGRAPHY 105

[64] K. Y. Chen, P. H. Hsu, and K. M. Chao. Approximate matching for run-length encoded

strings is 3SUM-Hard. In Proc. 20th Annu. Sympos. Combinatorial Pattern Matching (CPM),

pages 168–179, 2009.

[65] K. Choudhary and O. Gold. Extremal distances in directed graphs: Tight spanners and

near-optimal approximation algorithms. To appear in Proc. of Annu. ACM-SIAM Sympos.

on Discrete Algorithms (SODA), 2020. A preliminary version in arXiv:1812.01602.

[66] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM

Journal on Computing, 28(1):210–236, 1998.

[67] E. Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest

paths. J. ACM, 47(1):132–166, 2000.

[68] D. Coleman, I. A. Şucan, M. Moll, K. Okada, and N. Correll. Experience-based planning

with sparse roadmap spanners. In Proc. IEEE International Conference on Robotics and

Automation (ICRA), pages 900–905, 2015.

[69] L. J. Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–183, 2001.

[70] L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. J. Algo-

rithms, 50(1):7–95, 2004.

[71] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann. Touch me once and I

know it’s you!: Implicit authentication based on touch screen patterns. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages 987–996, 2012.

[72] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The open problems project. https:

//cs.smith.edu/˜jorourke/TOPP/. Online; accessed 11-August-2019.

[73] A. Dobson and K. E. Bekris. Sparse roadmap spanners for asymptotically near-optimal

motion planning. The International Journal of Robotics Research, 33(1):18–47, 2014.

[74] R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix multiplication and bottleneck

shortest paths. In Proc. of the 20th Annu. ACM-SIAM Sympos. on Discrete Algorithms

(SODA), pages 384–391, 2009.

[75] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Pro-

babilistic Models of Proteins and Nucleic Acids. Cambridge University Press, New York,

1998.

[76] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hy-

perplanes with applications. SIAM J. Comput., 15(2):341–363, 1986.

https://cs.smith.edu/~jorourke/TOPP/
https://cs.smith.edu/~jorourke/TOPP/

BIBLIOGRAPHY 106

[77] A. Efrat, Q. Fan, and S. Venkatasubramanian. Curve matching, time warping, and light

fields: New algorithms for computing similarity between curves. Journal of Mathematical

Imaging and Vision, 27(3):203–216, 2007.

[78] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical report, TU Vienna,

Austria, 1994.

[79] M. Elkin. Computing almost shortest paths. In Proc. 20th Annu. ACM Sympos. on Principles

of Distributed Computing (PODC), pages 53–62, 2001.

[80] M. Elkin and D. Peleg. Approximating k-spanner problems for k ą 2. In Proc. 8th Interna-

tional Conference on Integer Programming and Combinatorial Optimization (IPCO), pages

90–104, 2001.

[81] M. Elkin and D. Peleg. The client-server 2-spanner problem with applications to network

design. In Proc. 8th International Colloquium on Structural Information and Communication

Complexity (SIROCCO), pages 117–132, 2001.

[82] M. Elkin and D. Peleg. p1`ε, βq-spanner constructions for general graphs. SIAM J. Comput.,

33(3):608–631, 2004.

[83] D. Eppstein, M. Overmars, G. Rote, and G. Woeginger. Finding minimum area k-gons.

Discrete Comput. Geom., 7(1):45–58, 1992.

[84] P. Erdős. Extremal problems in graph theory. In Proc. Sympos. on Theory of Graphs and

its Applications (Smolenice, Czechoslovakia), pages 29–36, 1963.

[85] J. Erickson. Lower bounds for linear satisfiability problems. Chicago Journal of Theoretical

Computer Science, 1999(8), 1999.

[86] E. Ezra, S. Har-Peled, H. Kaplan, and M. Sharir. Decomposing arrangements of hyperplanes:

VC-dimension, combinatorial dimension, and point location. CoRR, abs/1712.02913, 2017.

[87] E. Ezra and M. Sharir. A nearly quadratic bound for the decision tree complexity of k-

SUM. In Proc. 33rd International Symposium on Computational Geometry (SoCG), pages

41:1–41:15, 2017.

[88] E. Ezra and M. Sharir. A nearly quadratic bound for point-location in hyperplane arrange-

ments, in the linear decision tree model. Discrete Comput. Geom., 61(4):735–755, 2019.

[89] S. Fortune and J. Hopcroft. A note on Rabin’s nearest-neighbor algorithm. Inform. Process.

Lett., 8(1):20–23, 1979.

[90] M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico

di Palermo, 22:1–74, 1906.

BIBLIOGRAPHY 107

[91] G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in X ` Y

and matrices with sorted columns. J. Comput. Sys. Sci., 24(2):197–208, 1982.

[92] M. L. Fredman. How good is the information theory bound in sorting? Theor. Comput. Sci,

1(4):355–361, 1976.

[93] M. L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J.

Comput., 5(1):83–89, 1976.

[94] A. Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440–458, 2017.

[95] A. Gajentaan and M. H. Overmars. On a class of Opn2q problems in computational geometry.

Comput. Geom., 5:165–185, 1995.

[96] J. Gao and D. Zhou. The emergence of sparse spanners and greedy well-separated pair

decomposition. In Proc. 12th Scandinavian Sympos. and Workshops on Algorithm Theory

(SWAT), pages 50–61, 2010.

[97] C. Gavoille and C. Sommer. Sparse spanners vs. compact routing. In Proc. 23rd Annu. ACM

Sympos. on Parallelism in Algorithms and Architectures (SPAA), pages 225–234, 2011.

[98] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell System Technical

Journal, 38(4):933–967, 1959.

[99] O. Gold and M. Sharir. On the complexity of the discrete Fréchet distance under L1 and

L8. In Proc. 31st European Workshop on Computational Geometry (EuroCG), 2015.

[100] O. Gold and M. Sharir. Dominance product and high-dimensional closest pair under L8.

In Proc. of the 28th International Sympos. on Algorithms and Computation (ISAAC), pages

39:1–39:12, 2017.

[101] O. Gold and M. Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy. In

Proc. 25th Annu. European Sympos. on Algorithms (ESA), pages 42:1–42:13, 2017. Also in

arXiv:1512.05279, 2015.

[102] O. Gold and M. Sharir. Dynamic time warping and geometric edit distance: Breaking

the quadratic barrier. ACM Trans. Algorithms, 14(4):50:1–50:17, 2018. Also in Proc. 44th

International Colloquium on Automata, Languages, and Programming (ICALP), pages 25:1-

25:14, 2017.

[103] S. Grabowski. New tabulation and sparse dynamic programming based techniques for se-

quence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016.

[104] A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th Annu.

Sympos. on Foundations of Computer Science (FOCS), pages 621–630, 2014.

BIBLIOGRAPHY 108

[105] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Trans.

Amer. Math. Soc., 117:285–306, 1965.

[106] T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. Chapman

& Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1998.

[107] M. Henning and A. Yeo. Total Domination in Graphs. Springer Monographs in Mathematics.

Springer New York, 2014.

[108] A. Hernández-Barrera. Finding an opn2 lognq algorithm is sometimes hard. In Proc. 8th

Canadian Conference on Computational Geometry, pages 289–294, 1996.

[109] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J.

Complexity, 14(2):257–299, 1998.

[110] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–

375, 2001.

[111] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-

plexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[112] P. Indyk, M. Lewenstein, O. Lipsky, and E. Porat. Closest pair problems in very high dimen-

sions. In Proc. 31st International Colloquium on Automata, Languages and Programming

(ICALP), pages 782–792, 2004.

[113] Z. Jafargholi and E. Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–343, 2016.

[114] D. M. Kane, S. Lovett, and S. Moran. Near-optimal linear decision trees for k-SUM and

related problems. In Proc. 50th Annu. ACM Sympos. on Theory of Computing (STOC),

pages 554–563, 2018.

[115] H. Kaplan, L. Kozma, O. Zamir, and U. Zwick. Selection from heaps, row-sorted matrices,

and X`Y using soft heaps. In 2nd Symposium on Simplicity in Algorithms (SOSA@SODA),

pages 5:1–5:21, 2019.

[116] H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir. Submatrix maximum queries in Monge

matrices and Monge partial matrices, and their applications. In Proc. 23rd Annu. ACM-

SIAM Sympos. on Discrete Algorithms (SODA), pages 338–355, 2012.

[117] M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM

J. Comput., 26(5):1384–1408, 1997.

[118] E. Keogh and A. C. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge

and Information Systems, 7(3):358–386, 2005.

BIBLIOGRAPHY 109

[119] E. J. Keogh and M. J. Pazzani. Scaling up Dynamic Time Warping to Massive Datasets,

pages 1–11. Springer Berlin-Heidelberg, 1999.

[120] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining applications.

In Proc. 6th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 285–289, 2000.

[121] D. E. Knuth. Optimum binary search trees. Acta Informatica, 1(3):270–270, 1972.

[122] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In

Proc. 27th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 1272–1287,

2016.

[123] K. Labib, P. Uznanski, and D. Wolleb-Graf. Hamming Distance Completeness. In Proc. 30th

Annu. Sympos. on Combinatorial Pattern Matching (CPM), pages 14:1–14:17, 2019.

[124] F. Le Gall. Faster algorithms for rectangular matrix multiplication. In Proc. 53rd Annu.

IEEE Sympos. on Foundations of Computer Science (FOCS), pages 514–523, 2012. Also in

arXiv:1204.1111, 2012.

[125] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th International

Sympos. on Symbolic and Algebraic Computation (ISSAC), pages 296–303, 2014.

[126] F. Le Gall and F. Urrutia. Improved rectangular matrix multiplication using powers of

the coppersmith-winograd tensor. In Proc. 29th Annu. ACM-SIAM Sympos. on Discrete

Algorithms (SODA), pages 1029–1046, 2018.

[127] A. Lincoln, V. V. Williams, J. R. Wang, and R. Williams. Deterministic time-space trade-offs

for k-SUM. In Proc. 43rd Int’l Colloq. on Automata, Languages, and Programming (ICALP),

pages 58:1–58:14, 2016.

[128] W. J. Masek and M. S. Paterson. A faster algorithm computing string edit distances. Journal

of Computer and System Sciences, 20(1):18–31, 1980.

[129] J. Matoušek. Computing dominances in En. Inform. Process. Lett., 38(5):277–278, 1991.

[130] S. Meiser. Point location in arrangements of hyperplanes. Information and Computation,

106(2):286–303, 1993.

[131] A. Mirzaian and E. Arjomandi. Selection in X ` Y and matrices with sorted rows and

columns. Information processing letters, 20(1):13–17, 1985.

[132] M. Müller. Information Retrieval for Music and Motion, pages 69–84. Springer Berlin-

Heidelberg, 2007.

BIBLIOGRAPHY 110

[133] D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–116, 1989.

[134] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Comput.,

18(4):740–747, 1989.

[135] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. J. ACM,

36(3):510–530, 1989.

[136] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-

Verlag New York, NY, 1985.

[137] M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd ACM

Sympos. on Theory of Computing (STOC), pages 603–610, 2010.

[138] M. Pǎtraşcu and R. Williams. On the possibility of faster SAT algorithms. In Proc. 21st

Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 1065–1075, 2010.

[139] M. Rabin. Probabilistic algorithms. In Algorithms and Complexity, Recent Results and New

Directions, Academic Press, pages 21–39, 1976.

[140] C. A. Ratanamahatana and E. Keogh. Three myths about dynamic time warping data

mining. In Proc. 2005 SIAM International Conference on Data Mining, pages 506–510,

2005.

[141] L. Roditty, M. Thorup, and U. Zwick. Roundtrip spanners and roundtrip routing in directed

graphs. In Proc. 13th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages

844–851, 2002.

[142] L. Roditty and V. V. Williams. Fast approximation algorithms for the diameter and radius of

sparse graphs. In Proc. 45th ACM Sympos. on Theory of Computing (STOC), pages 515–524,

2013.

[143] K. F. Roth. On certain sets of integers. Journal of the London Mathematical Society,

28(1):104–109, 1953.

[144] M. I. Shamos. Geometric complexity. In Proc. of 7th Annu. ACM Sympos. on Theory of

Computing (STOC), pages 224–233, 1975.

[145] M. A. Soss, J. Erickson, and M. H. Overmars. Preprocessing chains for fast dihedral rotations

is hard or even impossible. Comput. Geom., 26(3):235–246, 2003.

[146] T. Tao and V. Vu. Additive Combinatorics. Cambridge University Press, 2006.

[147] M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th Annu. ACM Sympos. on

Parallel Algorithms and Architectures (SPAA), pages 1–10, 2001.

BIBLIOGRAPHY 111

[148] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

[149] V. Vassilevska, R. Williams, and R. Yuster. All pairs bottleneck paths and max-min matrix

products in truly subcubic time. Theory of Computing, 5(1):173–189, 2009.

[150] T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,

1968.

[151] K. Wang and T. Gasser. Alignment of curves by dynamic time warping. Annals of Statistics,

25(3):1251–1276, 1997.

[152] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Experimental

comparison of representation methods and distance measures for time series data. Data

Mining and Knowledge Discovery, 26(2):275–309, 2013.

[153] O. Weimann, A. Abboud, and V. V. Williams. Consequences of faster sequence alignment. In

Proc. 41st Int’l Colloq. on Automata, Languages, and Programming (ICALP), pages 39–51,

2014.

[154] R. Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. J. Combinatorial Theory, Series

B, 52(1):113–116, 1991.

[155] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc. 44th

Sympos. on Theory of Computing (STOC), pages 887–898, 2012.

[156] V. V. Williams and R. Williams. Subcubic equivalences between path, matrix and triangle

problems. In Proc. 51st Annu. IEEE Sympos. on Foundations of Computer Science (FOCS),

pages 645–654, 2010.

[157] V. V. Williams and R. Williams. Finding, minimizing, and counting weighted subgraphs.

SIAM J. Comput., 42(3):831–854, 2013.

[158] R. Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted APSP.

In Proc. 20th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 950–957,

2009.

[159] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.

J. ACM, 49(3):289–317, 2002.

הבאות. התוצאות את מראים אנו 6 בפרק

שהוא H תת־גרף לחשב יכולים אנו קודקודים, n על G ממושקל לא מכוון גרף לכל .1

.O(n3/2
√

log n) הוא H ב הקשתות שמספר כך ,G של (3/2)־פורש־קוטר

H תת־גרף לחשב יכולים אנו ,D קוטר עם קודקודים n על G ממושקל לא מכוון גרף לכל .2

.O(D1/3n4/3 log2/3 n) הוא H של הקשתות שמספר כך ,G של (5/3)־פורש־קוטר שהוא

D = כאשר (3/2)־פורש־קוטר, תת־גרף עבור 1 בסעיף מהחסם יותר טוב זה חסם

.o(
√
n/ log n)

אנו ,δ, ε ∈ [0, 1] לכל קודקודים, n על G = (V,E) ממושקל לא מכוון גרף בהינתן .3

מהבאים. אחד את המקיים H = (V,EH ⊆ E) תת־גרף לחשב יכולים

או קשתות, O(n2−ε log1−ε n) עם 1)־פורש־קוטר + δ) הוא H (א)

קשתות. O(n1+ε logε n) עם −2)־פורש־קוטר δ) הוא H (ב)

,(6 בפרק מובאים (אשר ריצה זמני ללא כאן מוצגות למעלה המבואות התוצאות פשטות, לשם

עם גרפים עבור גם עובדות שלנו התוצאות זאת, עם ממושקלים. לא מכוונים גרפים ועבור

על [1,W] מהתחום משקולות עם מכוון גרף G אם הקשתות. על (1 (לפחות חיוביים משקולות

.W בגודל חיבורי בגורם t הכפלי לגורם בנוסף תגדל H של המתיחה אז הקשתות,

נוספים סוגים חוקרים ואנו הדוקים, הם 2 ו 1 מסעיפים שהחסמים מראים גם אנו [64] ב

בסביבה קוטר פורשי תתי־גרפים לתחזק ניתן כיצד מראים גם אנו פורשים. תתי־גרפים של

זו, בעבודה אלו תוצאות כוללים לא אנו אך בגרף), קשתות של הורדה/הוספה (תחת דינמית

נוספים. לפרטים [64] ל הקורא את ומפנים

מהשימושים הרבה תיאורטית, מבחינה מעניינים הם קוטר פורשי שתתי־גרפים בלבד זו לא

תתי־גרפים עבור גם מתאימים מכוונים) לא גרפים על (שעובדים "רגילים" פורשים תתי־גרפים של

כמועמדים לשמש יכולים דלילה קשתות קבוצת עם קוטר פורשי תתי־גרפים בפרט, קוטר. פורשי

.[95] (backbone networks) שדרה לרשתות טובים

ט

קוטר פורשי תתי־גרפים 4

מיד אשר ,(diameter spanners) קוטר" "פורשי תתי־גרפים על מחקר מציגים אנו 6 בפרק

.Keerti Choudhary ו המחבר של [64] המאמר על מבוסס זה פרק נגדיר.

תת־גרף הינו G = (V,E) מכוון לא גרף של (spanner גם (נקרא פורש תת־גרף

בין המקוריים ביותר) (הקצרים המרחקים כל את בקירוב משמר אשר H = (V,EH ⊆ E)

G של (t-spanner) t־פורש תת־גרף הוא H פורמלי, באופן .G בגרף הקודקודים זוגות כל

ו dH(u, v) כאשר ,dH(u, v) ≤ t · dG(u, v) מתקיים u, v ∈ V קודקודים זוג לכל אם"ם

ה"מתיחה" פרמטר גם נקרא t הפרמטר בהתאמה. G ו H ב v ל u בין המרחקים הם dG(u, v)

לאחד נחשב G עבור טוב" פורש "תת־גרף ,t מתיחה ופרמטר G גרף בהינתן .H של (stretch)

.G משל פולינומי) (בגורם משמעותית דלילה קשתות כמות לו שיש

[14] Althöfer et al. .([131 ,130 ,21] (ראו 80 ה בשנות לראשונה הוצגו פורשים תתי־גרפים

(2k − תת־גרף יש קודקודים n על ממושקלות) קשתות עם (ייתכן מכוון לא גרף שלכל הראו

ה השערת קיום את מניחים אם .k > 0 טבעי מספר לכל קשתות, O(n1+1/k) עם (1־פורש

הגרף בתת הקשתות מספר בין הזה (trade-o� (ה התמורות שקלול ,[83] Erd®s של girth

אופטימלי. הוא שלו (stretch) המתיחה לפרמטר הפורש

שימושים מאד הרבה יש פורשים לתתי־גרפים תיאורטית, מבחינה מעניינים היותם מלבד

,15] ניתוב וסכמות תקשורת רשתות מבוזרות, מערכות כגון המחשב, מדעי של שונים בתחומים

,66 ,65] ביותר קצרים מסלולים קירוב ,[72 ,67] תנועה תכנון ,[145 ,139 ,132 ,96 ,95 ,69 ,68

.[146 ,29] מרחק שאילתות על העונים נתונים ומבני ,[78

הורדה שאפילו כך קשתות Ω(n2) עם גרפים שקיימים להראות ניתן מכוונים, גרפים עבור

הגרף קוטר של בגודל הוא שלו המתיחה שפרמטר תת־גרף לנו תיתן מהגרף אחת קשת של

לא מכוונים גרפים עבור לכן, בגרף). קודקודים זוג בין המקסימלי ביותר הקצר (המרחק

מגיעה מכאן כללי. t מתיחה פרמטר עבור (דלילים) מעניינים פורשים תתי־גרפים לקבל ניתן

,D קוטר עם G = (V,E) מכוון גרף בהינתן t־פורשי־קוטר. תתי־גרפים לחקור המוטיבציה

.dtDe היותר לכל הוא H של הקוטר אם"ם t־פורש־קוטר הוא H = (V,EH ⊆ E) תת־גרף

אותנו מביא זה .6 בפרק שנראה כפי קשתות, O(n) עם כזה H ׁ לבנות קל ,t = 2 עבור

הבאה. המרכזית לשאלה

תת־גרף G ל יש האם ,t < 2 מתיחה ופרמטר ,G = (V,E) מכוון גרף בהינתן שאלה:

ומהו להיות? יכול EH של הגודל קטן כמה כן, אם ?H = (V,EH ⊆ E) t־פורש־קוטר

?t ל זה גודל בין (trade-o� (ה התמורות שקלול

ח

הקלט. נקודות קבוצת של בקוטר שתלוי גורם כולל

זוג מציאת עבור [111] Indyk et al. של התוצאה את ומפשטים משפרים אנו 5 בפרק

בעיה לפתור שניתן מראים אנו .L∞ מטריקת תחת גבוה במימד ביותר קרובות נקודות

על־ידי או ,O(DP (n, d) log n) בזמן שרץ פולינומי־חזק דטרמיניסטי אלגוריתם על־ידי זו

הריצה זמן חסם הוא DP (n, d) כאשר ,O(DP (n, d)) זמן בתוחלת שרץ רנדומי אלגוריתם

במטריצה [i, j] שתא כך D מטריצה זוהי ;Rd ב נקודות n של dominance product לחישוב

הקואורדינטות מספר את מכיל D[i, j] כלומר ,D[i, j] = |{k | pi[k] ≤ pj[k]}| להיות מוגדר

.pi על שולט pj שבהן

הקואורדינטות כל בה L∞ מטריקת תחת Rd ב נקודות זוג מציאת בעיית של גרסה עבור

שרץ אלגוריתם מראים אנו ,[−M,M] תחום מאיזשהו שלמים מספרים הם הנקודות של

הכפלת של הריצה בזמן המעריך הוא ω(1, r, 1) כאשר ,Õ(min{Mnω(1,r,1), DP (n, d)}) בזמן
2.nr × n בגודל במטריצה n× nr בגודל מטריצה

של יותר כללי ניתוח על־ידי ,DP (n, d) עבור טובים יותר קצת חסמים נותנים אנו בנוסף,

חסמים הצבת על־ידי מלבניות. מטריצות בכפל משתמש אשר ,[156] Yuster של האלגוריתם

לקבל ניתן מביאים, שאנו בניתוח ([124 ,122] (ראו מלבניות מטריצות הכפלת עבור עדכניים

חשובה, משימה הינו בעצמו dominance product חישוב .DP (n, d) עבור משופרים חסמים

בסיסיות בעיות לפתרון אלגוריתמים בעוד שחורה) (כקופסא זה בחישוב שמשתמשים משום

מסוימות וגרסאות ,[73] (APBP) all-pairs-bottleneck-paths כגון שלנו), לאלגוריתם (בנוסף

.[156] (APSP) all-pairs-shortest-paths של

חישוב ,Rd שב הראו [121] Uzna«ski ו ,Labib ,Graf ,[99] שלנו המאמר לאחר

קרובות זוג למציאת פולי־לוגריתמים) גורמים כדי (עד חישובית שקול dominance product

וזוגי, קבוע p כל שעבור (נעיר אי־זוגי. קבוע הינו p ≥ 3 כאשר ,Lp מטריקת כל תחת ביותר

שלנו, בתוצאה (.[111] DP (n, d) על מהחסם משמעותית נמוך זו בעיה עבור הריצה זמן חסם

נקודות זוג מציאת כמו קשה לפחות הוא Rd ב dominance produt שחישוב מראים למעשה אנו

עם יחד Uzna«ski ו ,Labib ,Graf של התוצאות .Rd ב L∞ מטריקת תחת ביותר קרובות

נקודות זוג מציאת לבעיות dominance product חישוב בין הקשר את מראות שלנו התוצאה

שונות. מטריקות תחת ביותר קרובות

פולי־לוגריתמים. גורמים מסתיר Õ(·) 2הסימון

ז

.(L∞ ,L1 (למשל פוליהדרית1 היא עובדים מעליה

בגורם שיפור היותר לכל (או זה מסוג לחסם מעבר אלו בעיות לשפר ניתן שלא מאד ייתכן

,SETH קיום את מניחים שאם הראו [39] Künnemann ו Bringmann ש משום פולילוגריתמי),

בהמשך, .O(n2−Ω(1)) בזמן לפתרון ניתן לא DTW של החד־מימדי המקראה את אפילו אז

לוגריתמי גורם של שיפור שאפילו הראו [2] Bringmann ו Abboud ו ,[3] Abboud et al.

משמעותיות, להשלכות להביא יכול דומות, ריבועיות התאמה בעיות עבור גבוהה מספיק בחזקה

מעגלים. בסיבוכיות חדשים תחתונים וחסמים Formula-SAT ל יותר מהירים אלגוריתמים כגון

בין נוסף פופולרי מדד פוליהדריות. מטריקות מעל Discrete Fréchet Distance ה־ מדד

שאם הראו [40] Mulzer ו Bringmann .Discrete Fréchet Distance הוא נקודות של סדרות

החד־מימדי למקרה אפילו ,O(n2−Ω(1)) בזמן זה מדד לחשב ניתן לא ,SETH קיום את מניחים

d(x, y) = הסטנדרטית המטריקה (עם R הישר על אחת כל נקודות n של סדרות שתי נתונות בו

עומק עם פשוט 2־לינארי החלטה עץ זו לבעיה שיש מראים אנו העבודה של 4.5 בחלק .(|x−y|
שקיים מראים אנו ,Rd ב נקודות n של סדרות שתי עבור כללי, יותר ובאופן ,O(n log2 n) רק

מעליה שעובדים המטריקה כאשר ,d קבוע לכל ,O(n log2 n) עומק עם 2d־לינארי החלטה עץ

.(L∞ ,L1 (כגון פוליהדרית1 היא

L∞ מטריקת תחת גבוה במימד ביותר קרובות נקודות זוג 3

מטריקת תחת גבוה במימד ביותר קרובות נקודות זוג מציאת בעיית את חוקרים אנו 5 בפרק

שלו. והמנחה המחבר של [99] המאמר על מבוסס זה פרק .L∞

שונות נקודות זוג למצוא היא ביותר" קרובות נקודות "זוג בעיית ,Rd ב נקודות n בהינתן

את שפותרים יעילים אלגוריתמים ישנם קבוע, הוא d כאשר מינימלי. הוא ביניהן שהמרחק

מציאת אולם, כללי. d עבור מקורב פתרון לחישוב מהירים אלגוריתמים ישנם כן כמו הבעיה,

אלגוריתמית. מבחינה מובן פחות הרבה נראה (d = n (למשל גבוהים מימדים עבור מדויק פתרון

עבור ,d = nr כאשר ,Rd ב L∞ מטריקת תחת ביותר קרובות נקודות זוג בבעיית עוסקים אנו

עבור .O(dn2) בזמן רץ זו בעיה לפתרון הנאיבי שהאלגוריתם לראות קל .r > 0 איזשהו

זוג מציאת עבור הלא־טריוויאלי הראשון האלגוריתם את הראו [111] Indyk et al. ,d = n

הריצה שזמן משום פולינומית־חלשה היא שלהם התוצאה אך ,L∞ מטריקת תחת ביותר קרובות

של קבוע מספר בעל קמור סימטרי פאון הוא שלה היחידה שכדור נורמה על־ידי מושרית שהמטריקה 1כלומר,
פאות.

ו

בבעיות הקשורות נוספות להתפתחויות .O(n2(log log n)O(1)/ log2 n) בזמן שרץ 3SUM ל

.[125 ,120 ,50 ,25] גם ראו אלו

גיאומטרית להתאמה אלגוריתמים 2

פרק נקודות. של סדרות שתי בין גיאומטרית להתאמה בסיסיות בעיות חוקרים אנו 4 בפרק

שלו. והמנחה המחבר של [101 ,98] המאמרים על מבוסס זה

במרחב נקודות של סדרות או עקומים בין ל"דמיון" מדד נותן גיאומטרית התאמה חישוב

,Dynamic Time Warping הם: גיאומטרית להתאמה פופולרים מדדים מסוים. מטרי

את את חוקרים אנו 4 בפרק .Discrete Fréchet Distance ו ,Geometric Edit Distance

אלו. מדדים של החישוב סיבוכיות

הם Geometric Edit Distance (GED) ו Dynamic Time Warping (DTW) המדדים

של סדרות על־ידי המיוצגות זמן סדרות או עקומים בין "דימיון" של לחישוב בסיסיים מדדים

של שונים בתחומים רב בשימוש נמצא DTW מדד ספציפית, מסוים. מטרי במרחב נקודות

בין השוואה גיאומטריות, צורות בין התאמה קול, זיהוי כגון וביואינפורמטיקה, המחשב מדעי

נתונים התאמת מוסיקה, ועיבוד זיהוי מגע, מסכי על מחוות זיהוי וחלבונים, DNA סדרות

ב כאלה לשימושים דוגמאות ראו נתונים. כרית בתחום שימושים והרבה בזמן, סדרות מבוססי

�dynamic time warping" הביטוי של חיפוש היום, עד .[149 ,138 ,129 116־118, ,76 ,70 ,47]

מניב Google ב סטנדרטי וחיפוש מאמרים, 40,000 כ מניב Google Scholar ב מרכאות) (עם

זה. מדד של והחשיבות העצומה הפופולריות את מדגים זה תוצאות. 270,000 כ

מאמצים למרות .P ב מרכזית בעיה היא (GED (או DTW ה מדד של החישוב משימת לכן,

GED או DTW לחישוב ידוע שהיה טוב הכי האלגוריתם יותר, יעילים אלגוריתמים למצוא רבים

שרץ 60 ה משנות דינמי תכנון אלגוריתם הוא Rd ב אחת כל נקודות n של סדרות שתי בין

המקרים אחד שזה ,d = 1 שבו החד־מימדי למקרה אפילו ,(Θ(n2) בזמן (כלומר ריבועי בזמן

מעשיים. שימושים בהרבה הנפוצים

של 4.1 בחלק .GED ו DTW חישוב עבור תת־ריבועי בזמן שרצים הראשונים האלגוריתמים

שתי בין GED או DTW לחישוב שנים 50 הכ בן הריבועי החסם את "שוברים" אנו זו עבודה

בזמן שרצים דטרמיניסטים אלגוריתמים פיתוח על־ידי ,R ב אחת כל נקודות n של סדרות

המטריקה עוד כל יותר, גבוהים במימדים גם עובדים שלנו האלגוריתמים .O(n2/ log log n)

ה

לינארית ניוון ובדיקת ,k-SUM ,3SUM ה בעיות 1

Linear גם (נקראת לינארית ניוון ובדיקת ,k-SUM ,3SUM הבעיות את חוקרים אנו 3 בפרק

שלו. והמנחה המחבר של [100] המאמר על מבוסס זה פרק .(Degeneracy Testing

האם להכריע היא 3SUM ה בעיית של הכללית הגרסה ממשיים, מספרים n בהינתן

2014 ב שקרתה דרך לפריצת עד לאפס. שווה שסכומם מתוכם מספרים שלושה קיימים

O(n2) בזמן שרץ פשוט ידוע שאלגוריתם השערה היתה ,[103] Pettie ו Grønlund על־ידי

ניתנות רבות אלגוריתמיות שבעיות הראו חוקרים השנים, בחלוף זו. לבעיה אופטימלי הוא

k-linear degeneracy ו k-SUM כגון שלה, מוכללות גרסאות או 3SUM ה מבעיית לרדוקציה

וקבוצה f(x1, . . . , xk) = a0 +
∑

1≤i≤k aixi לינארית פונקציה בהינתן .(k-LDT) testing

בו המיוחד המקרה .0 ∈ f(Ak) האם להכריע היא k-LDT ה בעיית ,A ⊂ R סופית

האם פתוחה שאלה זו כללי, k עבור .k-SUM ה בעיית נקרא f(x1, . . . , xk) =
∑k

i=1 xi

ההשערות .(k = 3 ל נכון זה מקודם, שהזכרנו (כפי o(ndk/2e) בזמן לפתרון ניתנות אלו בעיות

תחתונים חסמים של להוכחות מאד נפוץ בסיס להיות הפכו אלו בעיות של החישוב קושי על

.P ב רבות בעיות עבור תלויים

,O(n3/2) היא 3SUM של 4־לינארי רנדומי החלטה עץ שסיבוכיות מראים אנו ,3 בפרק

,O(nk/2) היא k-LDT ושל k-SUM של 2k)־לינארי − 2) רנדומי החלטה עץ ושסיבוכיות

רנדומי החלטה עץ מודל של פורמלית הגדרה עבור 2.1 פרק (ראו אי־זוגי. k ≥ 3 לכל

O(n3/2
√

log n) החסם את רנדומי) במודל (אומנם בהתאמה משפרים אלו חסמים r־לינארי.)

(2k− החלטה עץ סיבוכיות על O(nk/2
√

log n) החסם ואת 4־לינארי החלטה עץ סיבוכיות על

לינארי החלטה עץ שסיבוכיות שהראו הראשונים (הם [103] Pettie ו Grønlund של (2־לינארי

בזמן שרץ 3SUM ל דטרמיניסטי אלגוריתם מראים אנו בנוסף, תת־ריבועית). היא 3SUM ל

Grønlund של O(n2(log log n/ log n)2/3) החסם את משפר אשר ,O(n2 log log n/ log n)

אך ,[93] Freund על־ידי תלוי בלתי באופן שהתקבל לחסם זהה זה חסם .[103] Pettie ו

.word-RAM ה מודל של יותר עמוק ניצול עקב יותר, פשוט שלנו האלגוריתם

היא שבהן שהמרכזית אלו, בעיות על רבות התפתחויות פורסמו ,[100] שלנו המאמר לאחר

של 2k־לינארי החלטה עץ שסיבוכיות שהראו [113] Moran ו ,Lovett ,Kane של דרך פריצת

בסיסיות בעיות עבור גם אופטימליים כמעט החלטה עצי והראו ,O(kn log2 n) רק היא k-SUM

הן X, Y כאשר ,{x+y | x ∈ X, y ∈ Y } הקבוצה את (למיין "X+Y את "למיין כגון נוספות,

[54] Chan על־ידי בוצעה נוספת התפתחות .APSP ו־ אחת), כל ממשיים מספרים n של קבוצות

דטרמיניסטי אלגוריתם פיתוח על־ידי ,3SUM של הזמן בסיבוכיות נוסף לוגריתמי גורם ששיפר

ד

Longest Common ,Edit Distance ביניהן קודם, שהזכרנו הבעיות את O(n2−Ω(1)) בזמן

נוספות. רבות ובעיות ,Dynamic Time Warping ,Discrete Fréchet Distance ,Subsequence

לחסמים דוגמאות עבור [154 ,151 ,140 ,135 ,134 ,120 ,112 ,94 ,62 ,38 ,26 ,22 ,16 [6־3, ראו

תלויים. תחתונים

[2] Bringmann ו Abboud ו ,[3] Abboud et al. על־ידי לאחרונה שנעשו נוספות עבודות

יוביל לעיל, שהזכרנו מהבעיות אחת של הריצה בזמן polylog(n) של שיפור שאפילו מראות

תחתונים חסמים או יותר, מהירים Formula-SAT אלגוריתמי כגון משמעותיות, להשלכות

(וההשלכות) לקושי ראיות נותנות אלו עבודות .(circuit complexity) מעגלים בסיבוכיות חדשים

של ששיפורים ולכך אופטימלים, שהם שייתכן לכך כיום, הידועים לאלגוריתמים שיפורים של

האופטימלי. לפתרון להגיע היחידה הדרך אולי הם הריצה בזמן polylog(n)

גם (נקרא real-RAM הסטנדרטי החישוב למודל מתייחסת עכשיו עד הסקירה

הסטנדרטיות האריתמטיקה פעולות כל את כולל שלו החישוב זמן אשר ,(uniform model

פופולרי אך יותר, מנוון אחר, מודל האלגוריתם. על־ידי מתבצעות אשר הבוליאניות והפעולות

קלט כל על האלגוריתם של הריצות כל בו ,(decision tree model) החלטה עץ מודל הוא מאד

עם אלגברי ביטוי של סימן בדיקת על מבוססת הסתעפות כל שבו עץ, על־ידי מיוצגות אפשרי

(מסלול נספרות החישוב במסלול ההסתעפויות רק זה, במודל מטה). (ראו מסוימים אילוצים

(העומק שלו העומק היא ההחלטה עץ של הסיבוכיות בעלה). ומסתיים בשורש מתחיל חישוב

החלטה, עץ של פופולרי מאד סוג חישוב). מסלול כל של ההסתעפויות מספר על עליון חסם נותן

זה במודל ,r-linear decision tree או r־לינארי" החלטה "עץ הוא זו, בעבודה נתמקד גם שעליו

של פורמלית הגדרה מחוברים. r היותר לכל עם לינארים ביטויים הם האלגברים הביטויים כל

העבודה. של 2.1 בחלק מובאת זה מודל

ועבור ,(3SUM (ובפרט k־SUM עבור משופרים החלטה עצי מראים אנו זו בעבודה

לבעיות משופרים אלגוריתמים וכן פוליהדריות, מטריקות מעל Discrete Fréchet Distance

,Geometric Edit Distance ,Dynamic Time Warping ,3SUM הבאות: הפופולריות

.High Dimensional Closest Pair under L∞ ו ,Dominance Product

ועל בהם, הנלמדות הבעיות על זו, בעבודה מהפרקים אחד כל על קצרה סקירה ניתן כעת,

שקיבלנו. התוצאות

ג

תקציר
מדעי. כתחום התפתחותו מאז המחשב במדעי מרכזי נדבך הינו אופטימליים אלגוריתמים פיתוח

חדשים הכי האלגוריתמים אם יודעים איננו הנחקרות הבעיות מרבית עבור היום, עד אולם

במחלקה ביותר הפופולריות הבעיות בין (אופטימליים). להשיג שניתן ביותר הטובים הם עבורן

כאשר ,n בגודל קלט עבור O(nc) בזמן שרצים סטנדרטים אלגוריתמים עבורן ידועים אשר אלו הן P

ביותר הקצר המסלול חישוב כגון בעיות, של שונים סוגים למצוא ניתן ,c = 3 עבור .c = 3 או c = 2

מטריצות. של קומבינטורית והכפלה ,(APSP ְ) ממשיים משקולות עם מכוון בגרף קודקודים זוג כל בין

מחרוזות, בין התאמה ובעיות ,3SUM כגון רבות, בסיסיות בעיות למצוא ניתן ריבועי), (זמן c = 2 עבור

Dynamic ,Longest Common Subsequence ,Edit Distance כגון נקודות, של וסדרות עקומים,

אלו שלבעיות מכיוון .Discrete Fréchet Distance ו ,Geometric Edit Distance ,Time Warping

ריבועיות". "בעיות גם נקראות אלו בעיות ,O(n2−Ω(1)) בזמן שרץ אלגוריתם ידוע לא

פיתחו חוקרים אלו, בסיסיות בעיות עבור אופטימליים אלגוריתמים למצוא מהמוטיבציה

מציין polylog(n) כאשר ,O(nc/polylog(n)) מהצורה ריצה זמן עם משופרים אלגוריתמים

ריבועיות בעיות הרבה של לסיבוכיות אלו, מעבודות כתוצאה .k > 0 קבוע איזשהו עבור logk n

Pettie ו Grønlund הראו לאחרונה רק .O(n2/polylog(n)) מהצורה חסמים כיום יש קלאסיות

מספרים n של בקבוצה מספרים 3 קיימים האם (להכריע המפורסמת 3SUM ה שבעיית [103]

מכיוון הזו. מהצורה תת־ריבועי חסם עם אלגוריתם ע"י לפתרון ניתנת (0 הוא שסכומם ממשיים

,[107 ,94] אחרות בעיות הרבה עבור תחתון כחסם משמשת 3SUM ה בעיית של שהסיבוכיות

התקדמות כל ,(3SUM מ רדוקציות על־ידי זאת (מראים 3SUM-Hard בעיות גם הנקראות

רצויה. מאד היא 3SUM של הסיבוכיות על שלנו בהבנה

כמה עד יותר טוב להבין היא משופרים אלגוריתמים למצוא לנסיון משלימה מחקר עבודת

נראה אולם, תחתונים. חסמים הוכחת על־ידי הקיימים, האלגוריתמים את לשפר ניתן תיאורטית

הוא מוכחות) לא בהשערות תלויים (לא "אמיתיים" תחתונים חסמים בהוכחת הקיים שהידע

סיבוכיות על שלנו בהבנה משמעותית התקדמות חלה האחרונות בשנים זאת, עם מאד. מוגבל

מבעיות רדוקציות דרך תלויים", תחתונים "חסמים הוכחת ידי על P ב בסיסיות בעיות של

האם להכריע במישור, נקודות n בהינתן לדוגמא, .CNF-SAT ו ,APSP ,3SUM כגון מרכזיות,

קשה להיות שידועה בעיה זו שלושתן) דרך העובר ישר (שיש קו־ליניאריות נקודות שלוש קיימות

חוקרים לאחרונה .(3SUM-Hard כ הידועות המפורסמות הבעיות אחת (זו 3SUM כמו לפחות

ממה שנובעת (הנחה O(2(1−Ω(1))n) בזמן CNF-SAT את לפתור ניתן שלא בהנחה כי הוכיחו

לפתור ניתן שלא נובע ,(SETH בקיצור או Strong Exponentail Time Hypothesis שנקרא

ב

תמצית
מדעי. כתחום התפתחותו מאז המחשב במדעי מרכזי נדבך הינו אופטימליים אלגוריתמים פיתוח

חדשים הכי האלגוריתמים אם יודעים איננו הנחקרות הבעיות מרבית עבור היום, עד אולם

במחלקה ביותר הפופולריות הבעיות בין (אופטימליים). להשיג שניתן ביותר הטובים הם עבורן

כאשר ,n בגודל קלט עבור O(nc) בזמן שרצים סטנדרטים אלגוריתמים עבורן ידועים אשר אלו הן P

חישוב בעיית ואת מטריצות, של קומבינטורית הכפלה בעיות למצוא ניתן ,c = 3 עבור .c = 3 או c = 2

עבור .(APSP גם (נקראת ממשיים משקולות עם מכוון בגרף קודקודים זוג כל בין ביותר הקצר המסלול

מחרוזות, בין התאמה ובעיות ,3SUM כגון רבות, בסיסיות בעיות למצוא ניתן ריבועי), (זמן c = 2

נקודות. של וסדרות עקומים,

הבאות. הבסיסיות הבעיות עבור משופרים ואלגוריתמים החלטה עצי נציג זו, בעבודה

.3SUM עבור משופר תת־ריבועי זמן עם ואלגוריתם k-SUM עבור משופר החלטה עץ •

המדדים את ומחשבים תת־ריבועי בזמן שרצים הראשונים האלגוריתמים •
נקודות של סדרות שתי בין Geometric Edit Distance ו Dynamic Time Warping

אלו. בעיות עבור שנים 50 כ־ הידוע הריבועי החסם את "שוברת" זו תוצאה .R ב

מעליה שעובדים המטריקה עוד כל יותר, גבוהים במימדים גם עובדים שלנו האלגוריתמים

.(L∞ ו־ L1 (כגון פוליהדרית היא

עם החלטה עץ מראים אנו ,Discrete Fréchet Distance ה מדד חישוב בעיית עבור

פוליהדרית. היא מעליה שעובדים והמטריקה קבוע המימד כאשר לינארי, כמעט עומק

זוג מציאת עבור O(n3−Ω(1)) בזמן שרץ פולינומי־חזק שהוא והראשון משופר אלגוריתם •
.L∞ מטריקת תחת Rn ב נקודות n מתוך (Closest Pair) ביותר קרובות נקודות

תת־ריבועי קשתות מספר עם תתי־גרפים יש ממושקל לא מכוון גרף שלכל מראים אנו •
של בגרף) קודקודים זוג בין המקסימלי ביותר הקצר (המרחק הקוטר את משמרים אשר

קוטר'' "פורשי אלו לתתי־גרפים קוראים אנו מ־2. שקטן כפלי קירוב כדי עד המקורי הגרף

אותם. לחשב יעילים אלגוריתמים ומראים ,diameter spanners או

א

 אוניברסיטת תל אביב

 הפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר

 ביה"ס למדעי המחשב ע"ש בלווטניק

 P -בעיות קלאסיות בלמספר אלגוריתמים חדשים

 חיבור לשם קבלת התואר

 דוקטור לפילוסופיה

 מאת

 עומר גולד

 מנחה: פרופ' מיכה שריר

 אוניברסיטת תל אביב הוגש לסנאט של

 אב תשע"ט

	Abstract
	Acknowledgments
	Introduction
	3SUM, k-SUM, and Linear Degeneracy
	Geometric Pattern Matching Algorithms
	High Dimensional Closest Pair under L-infinity and Dominance Product
	Diameter Spanners

	Preliminaries and Techniques
	Preliminaries and Notations
	Techniques

	3SUM, k-SUM, and Linear Degeneracy
	Background
	Summary of Our Results and Related Work
	The Quadratic 3SUM Algorithm and Search-Contours
	Fredman's Trick, Pairwise Sums, and Fractional Cascading
	Grønlund and Pettie's Subquadratic Decision Tree for 3SUM
	Improved Decision Trees for 3SUM, k-SUM, and k-LDT
	Subquadratic Algorithms for 3SUM
	Improved Deterministic Subquadratic 3SUM Algorithm

	Geometric Pattern Matching Algorithms
	Dynamic Time Warping and Geometric Edit Distance
	Problem Statements
	Summary of Our Results and Related Works

	Preliminaries, Tools, and the Quadratic Time DTW Algorithm
	Dynamic Time Warping in Subquadratic Time
	Extension to High-Dimensional Polyhedral Metric Spaces
	Lifting the General Position Assumption

	Geometric Edit Distance in Subquadratic Time
	Near-Linear Depth Decision Trees for Polyhedral Discrete Fréchet Distance
	Problem Statement and Quadratic Algorithm
	Decision Tree for the Euclidean Plane
	Decision Trees for the Decision Problem under Polyhedral Metrics
	Solving the Optimization Problem

	High Dimensional Closest Pair under L-infinity and Dominance Product
	Background
	Summary of Our Results

	Dominance Product
	Generalized and Improved Bounds

	Reducing L-infinity Closest Pair Decision to Dominance Product
	Solving the Optimization Problem
	Strongly-Polynomial Subcubic Algorithms

	A Faster Algorithm for L-infinity Closest Pair with Bounded Integer Coordinates

	Diameter Spanners
	Background
	Our Results and Related Works
	Preliminaries and Techniques
	Construction of Diameter Spanners
	(3/2)-Diameter Spanner
	(5/3)-Diameter Spanner
	General (low-stretch or small-size)-Diameter Spanner

	Conclusions and Open Questions
	Bringing the Four Russians to Geometry: General Position Testing
	Sorting X+Y
	Additional Classical Quadratic Problems

	Bibliography

