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Abstract

Communication networks are vulnerable to natural disasters, such as earthquakes or

floods, as well as to physical attacks, such as an Electromagnetic Pulse (EMP) attack.

Such real-world events happen at specific geographical locations and disrupt specific

parts of the network. Therefore, the geographical layout of the network determines

the impact of such events on the network’s physical topology in terms of capacity,

connectivity, and flow.

Recent works focused on assessing the vulnerability of a deterministic (geograph-

ical) network to such events. In this work, we focus on assessing the vulnerability of

(geographical) random networks to such disasters. We consider stochastic graph mod-

els in which nodes and links are probabilistically distributed on a plane, and model the

disaster event as a circular cut that destroys any node or link within or intersecting

the circle.

We develop algorithms for assessing the damage of both targeted and non-targeted

(random) attacks and determining which attack locations have the expected most dis-

ruptive impact on the network. Then, we provide experimental results for assessing

the impact of circular disasters to communications networks in the USA, where the

network’s geographical layout was modeled probabilistically, relying on demographic

information only. Our results demonstrates the applicability of our algorithms to real-

world scenarios.

Our novel approach allows to examine how valuable is public information about the



network’s geographical area (e.g., demography, topography, economy) to an attacker’s

destruction assessment capabilities in the case the network’s physical topology is hid-

den, and examine the affect of hiding the actual physical location of the fibers on the

attack strategy. Thereby, our schemes can be used as a tool for policy makers and

engineers to design more robust networks by placing links along paths that avoid areas

of high damage cuts, or identifying locations which require additional protection efforts

(e.g., equipment shielding).

Overall, the work demonstrates that using stochastic modeling and geometry (ge-

ometric probability, computational geometry) with numerical analysis techniques can

significantly contribute to our understanding of network survivability and resilience.
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Chapter 1

Introduction

1.1 Background

In the last decades, telecommunication networks have been increasingly crucial for

information distribution, control of infrastructure and technological services, as well as

for economies in general. Large scale malfunctions and failures in these networks, due

to natural disasters, operator errors or malicious attacks pose a considerable threat to

the well being and health of individuals all over the industrialized world. It is therefore

of considerable importance to investigate the robustness and vulnerabilities of such

networks, and to find methods for improving their resilience and stability.

The global communications infrastructure relies heavily on physical infrastructure

(such as optical fibers, amplifiers, routers, and switches), making them vulnerable to

physical attacks, such as Electromagnetic Pulse (EMP) attacks, as well as natural dis-

asters, such as solar flares, earthquakes, hurricanes, and floods [8], [16], [17], [40], [41].

During a crisis, telecommunication is essential to facilitate the control of physically

remote agents, provide connections between emergency response personnel, and even-

tually enable reconstitution of societal functions. Such real-world disasters happen in

specific geographic locations, therefore the geographical layout of the network has a
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crucial factor on their impact.

Although there has been significant research on network survivability, most previous

works consider a small number of isolated failures or focus on shared risk groups (e.g.,

[6], [27], [34] and references therein). On the other hand, work on large-scale attacks

focused mostly on cyber-attacks (viruses and worms) (e.g., [5], [18], [24]) and thereby,

focus on the logical Internet topology. In contrast, we consider events causing a large

number of failures in a specific geographical region, resulting in failures of network

components (represented by nodes and links) which are geographically located within

or intersecting the affected region.

This emerging field of geographically correlated failures, has started gaining atten-

tion only recently, e.g., [31, 32, 33, 30, 2, 4, 29, 28], in these works, algorithms were

proposed for assessing the impact of such geographically correlated failures to a given

deterministic network, and finding a location (or set of locations) where a disaster will

cause maximum disruptive damage to the network, measured by either capacity, con-

nectivity or flow terms. Various failure models were studied in these works, mainly in

the form of a circular region failures or line-segment failures, such that any station or

fiber within or intersecting the affected region is destroyed. Such failures were stud-

ied under the assumption of deterministic failures, as well as random failures (i.e. a

circular region failure located randomly over the map), and probabilistic failures (e.g.

gives the ability to study cases when a component’s fails in proportion to its distance

from the attacked point). While various failure models were studied in these works, in

all of them, the network’s layout is assumed to be deterministic, i.e. the geographical

locations of nodes and links are known. To the best of our knowledge, spatial non-

deterministic networks (e.g. spatial random networks) survivability were not studied

under the assumptions of geographically correlated failures, and this work is the first

to do so.

In this work we focus on the problem of geographically correlated failures in context
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of spatial random networks, in particular, finding locations where a disaster or an attack

on, will cause the most disruptive impact on the network. Before this work, that was

one of the most significant unstudied problems in the field, as similar problems for

deterministic networks was recently studied extensively.

We consider a stochastic model in which nodes and links are probabilistically dis-

tributed geographically on a plane. The motivation behind it is to examine the relia-

bility of a network where we possess only partial (probabilistic) information about its

geographical layout. For example, a geographically hidden network where the adver-

sary possesses only partial information about the network topology or no knowledge

at all. We show that valuable probabilistic knowledge about the network’s geograph-

ical layout can be modeled from publicly available data, such as demographic maps,

topographic maps, economy maps, etc. A simple example uses the fact that in densely

populated areas the probability for stations (nodes) to exist is high compared to des-

olated areas, in which it is less likely to find many stations. Similarly, the probability

for existence of a fiber (link) between two stations can be modeled as a function of

the distance between the stations, the population density in the station’s regions, and

possibly other parameters relating to the endpoints and geography.

We study the impact of circular geographically correlated failures centered in a

specific geographical location (referred as “circular cut”). The impact of such an event

is on all the networks’ component, i.e. stations, fibers (represented as nodes and links)

intersecting the circle (including its interior). Each network component located within

or intersecting the circular cut is considered to be destroyed. The damage is measured

by the total expected capacity of the intersected links, or by the total number of failed

network components.

It is relevant to note that in the case of a large-scale disaster or physical attack,

where many links fail simultaneously, current technology will not be able to handle very

large-scale re-provisioning (see for example, the CORONET project [11]). Therefore,
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Figure 1.1: Color map of the the USA population density in logarithmic scale. Data
is taken from [20].

we assume that lightpaths are static, implying that if a lightpath is destroyed, all the

data that it carries is lost. However, the main data loss damage is caused by the

inability to use those failed fibers, remaining the post-attack network (the network

without the failed fibers) limited only to the components outside the attack’s region.

Thus, a scenario that the location and the size of the attack causes large-scale failures

is fatal for the ability to transmit data not only from locations within the attack’s

region, but also from locations outside the region that are connected through fibers

that go through the region.

The ability to probabilistically model a network using information such as demo-

graphic maps (see illustration in Fig. 1.1), terrain maps, economy maps, etc. can be

used as an input to our algorithms for estimating the damage of attacks in different

locations, and determining a location where an attack will cause maximum expected

disruptive damage in terms of capacity or connectivity. This is important in assessing

the expected damage from an attack by an adversary with limited knowledge. In order

to design a more robust and well defended system one can consider the resilience of the
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actual network topology compared to the appropriate random model, and also consider

the effect of hiding the actual physical location of fibers on the attack strategy and

expected damage by an adversary.

In section 4.3 we provide experimental results that demonstrate the applicability

of our algorithms to estimate the expected impact of circular cuts in different loca-

tions on communication networks in the USA, and to find locations of (approximately)

worst-case cuts for this model, where the network’s layout was modeled relying on

demographic information only (see Fig. 1.1).

Overall in this work, we study the vulnerability of various spatial random net-

work structures to geographically correlated failures. That is networks which their

components’ locations (nodes and links) are distributed probabilistically on the plane.

Using stochastic modeling, geometric probability and numerical analysis techniques,

we demonstrate a novel approach to develop algorithms for finding locations in which

circular disasters (of particular radius) cause the expected most significant destruction,

allowing to identify locations which require additional protection efforts (e.g., equip-

ment shielding). We also provide an algorithm to assess the impact of a ‘random”

circular disaster to the random network. To the best of our knowledge, our work is the

first to study such geographically correlated failures in the context of spatial random

networks. Before this work, that was one of the most significant unstudied problems

in the field, as similar problems for deterministic networks was recently studied exten-

sively.

1.2 Related Work

The issue of network survivability and resilience has been extensively studied in the

past (e.g., [25, 6, 19, 42, 26, 27, 12, 5] and references therein). However, Most of these

works concentrated on the logical network topology and did not consider the physical
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location of nodes and links. When the logical (i.e., IP) topology is considered, wide-

spread failures have been extensively studied [18], [24]. Most of these works consider the

topology of the Internet as a random graph [5] and use percolation theory to study the

effects of random link and node failures on these graphs. These studies are motivated

by failures of routers due to attacks by viruses and worms rather than physical attacks.

Works that consider physical topology and fiber networks (e.g., [14], [27]), usually

focused on a small number of fiber failures (e.g., simultaneous failures of links sharing a

common physical resource, such as a cable, conduit, etc.). Such correlated link failures

are often addressed systematically by the concept of shared risk link group (SRLG)

[21] (see also section 1.1). Additional works explore dependent failures, but do not

specifically make use of the causes of dependence [23], [37], [39].

In contrast with these works, we focus on failures within a specific geographical

region, (e.g., failures caused by an EMP attack [17],[40]) implying that the failed com-

ponents do not necessarily share the same physical resource.

A closely related theoretical problem is the network inhibition problem [35], [36].

Under that problem, each edge in the network has a destruction cost, and a fixed

budget is given to attack the network. A feasible attack removes a subset of the edges,

whose total destruction cost is no greater than the budget. The objective is to find

an attack that minimizes the value of a maximum flow in the graph after the attack.

However, previous works dealing with this setting and its variants (e.g., [10], [36]) did

not study the removal of (geographically) neighboring links. Until the recent papers

[31, 32, 33] by Neumayer et al., perhaps the closest to this concept was the problem

formulated in [7].

Similarly to deterministic networks, the subject of random networks and survivabil-

ity was well studied in the past (e.g. [5], [12], [24], [13]), most of these works model

the network as a random graph without considering the physical location of nodes

and links, and focus on the robustness of the graph’s structure, ignoring a physical
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embedment in the plane. Some works considered geometry into the random model by

considering distances to the graph (e.g. [15]). However, previous works dealing with

such models did not study the removal of (geographically) neighboring links.

Recently, the subject of geographically correlated failures was proposed (e.g., [31,

32, 33]), where failures happens within a specific geographical region and span an ex-

tensive geographic area, disrupting all physical network equipment within the affected

region. Novel works have been made recently to study the impact of various types of

geographically correlated failures to a given deterministic network [33], [29], [30], [1],

[1], [4], [3]. In these works various failure models were studied, mainly in the form of

a circular region failures or line-segment failures, such that any station or fiber within

or intersecting the affected region is destroyed. Such failures were studied under the

assumptions of deterministic failures, as well as random failures (i.e. a circular region

failure located randomly over the map), and probabilistic failures (e.g. gives the ability

to study cases when a component’s failure probability is proportional to its distance

from the attacked point). While various failure models were studied in these works, in

all of them, the network’s layout is assumed to be deterministic, i.e. the geographical

locations of nodes and links are known. To the best of our knowledge, our work is the

first to study such geographically correlated failures in the context of spatial random

networks.

We give a brief survey on works which are the most closest and relevant to our work.

Similarly to the failure model we study in our work, most of these works consider a

geographically correlated failure by a circular region of a specific radius (referred as

“circular cut”), or by a line-segment of specific length (referred as “line-segment cut”).

Such a cut destroys any station or fiber within or intersecting it. However, we note

again, in all these works, the subject network is deterministic and given.
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Figure 1.2: The fiber backbone operated by a major U.S. network provider [22] studied
in [31, 32, 33].

Deterministic Failures In [31, 32, 33] Neumayer et al. formulated the problem

of finding a location where a physical disaster or an attack on, will cause the most

disruptive impact on the network in terms of capacity, connectivity and flow criteri-

ons (termed by them as the geographical network inhibition problem). They designed

algorithms for solving the problem, and demonstrated simulation results on a U.S in-

frastructure (see Fig. 1.2). To the best of our knowledge, [31, 32, 33] were the first to

study this problem. In these works they studied the affect of circular cuts and line seg-

ments cuts under different performance measures, in particular, provided polynomial

time algorithms to find a worst-case cut, that is a cut which maximizes/minimizes the

value of the performance measure. The performance measures of a cut, as studied in

these works are:

• TEC - The total expected capacity of the intersected links with the cut.

• ATTR - The fraction of pairs of nodes that remain connected (also known as the

average two-terminal reliability of the network)

• MFST - The maximum flow between a given pair of nodes s and t.

• AMF - The average value of maximum flow between all pairs of nodes.
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Figure 1.3: Line segments cuts of length approximately 120 miles optimizing TEC -
the red cuts maximize TEC and the black lines are nearly worst-case cuts. Taken from
[33].

For performance measure TEC, the worst-case cut obtains a maximum value, while for

the rest, it obtains a minimum value.

We give illustrations from some of their simulation results on a U.S infrastructure

which are relevant to our simulation results further in this work (in section 4.3). Fig. 1.3

shows that TEC value is large in areas of high link density, such as areas in Florida,

New York, and around Dallas. Fig. 1.4 shows that cuts that minimize the MFST

performance measure between Los Angeles and NYC were found close to both to Los

Angeles and NYC, and the southwest area also appeared to be vulnerable. These

results are relevant to the simulation results for our model as shown in section 4.3

In [1] Agarwal et al. presented improved runtime algorithms to the problems pre-

sented in [31, 32, 33] by the extensive use of tools from the field of computational

geometry. In addition, they study some extensions of these problems, such as allowing

multiple disasters to happen simultaneously and provided an approximation algorithm

for the problem of finding k points in which circular disasters (of particular radius)

cause the most significant destruction.
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Figure 1.4: The impact of circular cuts of radius approximately 120 miles on theMFST
between Los Angeles and NYC. Red circles represent cuts that result in MFST = 0
and black circles result in MFST = 1. Cuts which intersect the nodes representing
Los Angeles or NYC are not shown. Taken from [33].

Random Failures In [29], [30] by Neumayer and Modiano, they develop tools to

assess the impact of a ‘random’ geographic disaster to a given network. They studied

the impact of both random circular cut (i.e. a circular region failure of particular radius

located randomly on the plane) and random line-segment cut.

The random location of the disaster can model failure resulting from a natural

disaster such as a hurricane or collateral non-targeted damage in an EMP attack.

Intuitively, the probability of a link to fail under a random cut is proportional to the

length of the link. They also compared independent failures versus failures correlated

to a random cut under the ATTR performance measure, assuming independent link

failures such that links fail with the same probability as in the random cut case. Thus

the probability a link fails is still a function of its length, however links fail indepen-

dently. Their results shows that correlated failures (e.g., from a random circular cut)

are fundamentally different from independent failures.

In addition they showed simple insights about network design problems in the

context of random cuts. In the proposed problems the location of every node is fixed

and the goal is to find a set of links most robust to some metric under some constraints.
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Figure 1.5: The fiber backbone operated by a major U.S. network provider [9] and an
example of two attacks with probabilistic effects (the link colors represent their failure
probabilities). Taken from [4].

Probabilistic Failures An extensive work on the field of geographically correlated

failures, generalizing previous work and providing interesting extensions was made re-

cently in [2, 4] by Agarwal et al. In these works they proposed a probabilistic failure

model in the context of geographically correlated failures. In this model an attack

induces a spatial probability distribution on the plane, specifying the damage proba-

bility at each location (see Fig. 1.5). They consider probability functions which are

non-increasing functions of the distance between the epicenter and the component,

assuming these functions have a constant description complexity. Then, they develop

fully polynomial time approximation schemes to obtain the expected vulnerability of

the network in terms similar to the TEC performance measure discussed earlier. Their

algorithms also allow the assessment of the effects of several simultaneous events. An-

other notable extension provided in these works is the study of the vulnerability of

compound components, that is a component consists by a finite number of network

components, allowing lightpaths investigation, by noting a lightpath as a compound

component comprised by a finite number of links.

Recently, Agarwal, Kaplan, and Sharir presented in [3] an improved runtime al-

gorithms to the algorithms presented in these works, as an outcome of their result in
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their paper about the complexity of the union of ‘random Minkowski sums’ of s−gons
and disks (where the disks’ radius is a random non-negative number). We note that

this is one of the most recent works in this field (by the time of finalizing this thesis).

The novel techniques in these works are comprised with extensive use of tools

from the field of computational geometry, and in particular, theory of arrangements,

randomized algorithms, and state of the art results in this field. In chapter 5 we provide

an overview for one of the algorithms presented in these works, as it is relevant to the

problems and algorithm we provide in that chapter.

Summary Summarizing the previous work in this emerging field of geographically

correlated failures, we saw that when considering the network’s geographic layout to be

deterministic, various failure models were deeply studied in these works. In our work we

study the vulnerability of various spatial random network structures. That is networks

which their components’ locations (nodes and links) are probabilistically distributed

on the plane. Using stochastic modeling, geometric probability and numerical analysis

techniques, we develop a novel approach to develop an algorithm for finding locations

in which circular disasters (of particular radius) cause the expected most significant

destruction. We also provide an algorithm to assess the impact of a random circular

disaster to the random network. Before this work, that was one of the most significant

unstudied problems in the field, as similar problems for deterministic networks was

recently studied extensively. To the best of our knowledge, our work is the first to

study such geographically correlated failures in the context of spatial random networks.
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Chapter 2

Our Stochastic Model and Problem

Formulation

We study the model consisting of a random network immersed within a bounded convex

set B ⊆ R
2. We consider nodes as stations and links as cables that connect stations.

Stations are represented through their coordinates in the plane R
2, and links are rep-

resented by straight line segments defined by their end-points. The network is formed

by a stochastic process in which the location of stations is determined by a stochastic

point process. The distribution of the Poisson process is determined by the intensity

function f(u) which represents the mean density of nodes in the neighborhood of u.

The number of nodes in a Borel set B follows a Poisson distribution with the parameter

f(B), i.e., the integral over the intensity of all points in the Borel set. Furthermore,

the number of nodes in disjoint Borel sets are independent. An introduction to Poisson

Point Processes can be found in [38].

In our model we consider a network N = ((x′, y′) ∼ PPP (f()), link ∼ y(), c ∼
H(), Rec) where nodes are distributed in the rectangle Rec = [a, b] × [c, d] through a

Spatial Non-Homogeneous Poisson Point Process PPP (f()) where f() is the intensity

function of the PPP . Let y(pi, pj) be the probability for the event of existence of
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a link between two nodes located at pi and pj in Rec. H(c, pi, pj) is the cumulative

distribution function of the link capacity between two connected nodes, i.e. P (Cij <

c) = H(c, pi, pj) where pi and pj are the locations of nodes i and j, respectively. It

is reasonable to assume that y(pi, pj) and H(c, pi, pj) can be computed easily as a

function of the distance from pi to pj and that the possible capacity between them

is bounded (denoted by max{capacity}). We assume the following: the intensity

function f of the PPP , y, and the probability density function h (the derivative of H),

are functions of constant description complexity. They are continuously differentiable

and Riemann-integrable over Rec, which also implies that our probability functions

are of bounded variation over Rec, as their derivatives receive a maximum over the

compact set Rec ⊆ R
2.

We note that Poisson process is memoryless and independent, in particular, if we

look on a specific region with high intensity values then it is likely to have multiple

stations in this region. However, by our assumptions, it is reasonable that if a disaster

destroys some nodes in a region, then it is highly likely that it destroys other nodes

located nearby in this region. There are various point process models that can be used

to model a random network, for example, Matérn hard-core process and Gibbs point

processes class [38], which can be used where it is wanted that a random point is less

likely to occur at the location u if there are many points in the neighborhood of u

or for the hard-core process where a point u is either “permitted” or “not permitted”

depending whether it satisfies the hard-core requirement (e.g. far enough from all other

points). Methods similar to those presented here for the Poisson process can be applied

to these models, as well.

Definition 2.1 (Circular Cut). A circular cut D, is a circle within Rec determined

by its center point p = (xk, yk) and by it’s radius r, where p ∈ Recr = [a + r, b − r] ×
[c+ r, d− r]. 1 We sometimes denote the cut as cut(p, r) and Recr as Rec (depending

1For simplicity we assume that D can only appear in whole within Rec.
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Figure 2.1: Example of a circular cut D with TEC of
11
∑

i=1

ci. The green, blue and

red links depicts the different intersected-link types: α − link, β − link, and γ − link
respectively (as defined in section 3.1). The black links are not affected by D.

on the context). Such a cut destroys all fibers (links) that intersect it (including the

interior of the circle).

Our goal is to assess the vulnerability of the network to circular attacks (cuts).

We consider a fiber to be destroyed (failed fiber) if it intersects the cut (including the

interior of the circle), namely, the attack’s influence region. The impact is measured

by the total expected capacity of the intersected links (TEC), or by the total expected

number of intersected links, which is equivalent to the previous measure when all fibers

have capacity 1 (see illustration in Fig. 2.1). This will be done in three manners:

1. Provide an algorithm for evaluating the total expected capacity of the intersected

links (TEC) of the network with a circular attack in a specific location.

2. Provide an algorithm for finding an attack location (or a set of locations) which

has the highest expected impact on the network, that is, a worst case attack (one

with the highest TEC value).

3. Provide an algorithm to assess the expected impact on the network from a random

circular attack (such that the attack’s location is probabilistically distributed).

The first is done in chapter 3, the second and third in chapter 4.
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Chapter 3

Damage Evaluation Scheme

3.1 General Idea

We develop a scheme to evaluate the total expected capacity of the intersected links

(TEC) of the network with a circular attack in a specific location. This, will be useful

for the developing an algorithm that finds the attacks that have the highest expected

impact on the network, as described in chapter 4. First, we present the general idea

behind it. We divide the intersection of a cut D (denoted also by cut(p, r)) with a

graph’s edges into 3 independent types:

• α− link, is the case where the entire edge is inside cut(p, r), which means both

endpoints of the edge are inside cut(p, r) (see illustration in Fig. 3.1).

• β − link, is the case where one endpoint of the edge is inside cut(p, r) and the

other endpoint is outside of cut(p, r) (see illustration in Fig. 3.2).

• γ − link, is the case where both endpoints are outside of cut(p, r) and the edge

which connects the endpoints intersects cut(p, r) (see illustration in Fig. 3.3).

Note that any intersected link with cut D = cut(p, r) belongs to exactly one of

the above types. Fig. 2.1 depicts a circular cut with the different types of intersected

16
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Figure 3.1: α− link edge illustration
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Figure 3.2: β − link edge illustration
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Figure 3.3: γ − link edge illustration

links. For σ ∈ {α, β, γ}, let Xσ be the total capacity of all the intersected σ − link
type edges with cut D, namely the damage determined by σ − links. Thus, it holds

that the expected capacity of the intersected links of types α, β and γ is determined

by:

E[Xα] =
1

2

∫∫

D

∫∫

D

f(u)f(v)g(u, v) dudv (3.1)

E[Xβ] =

∫∫

Rec−D

∫∫

D

f(u)f(v)g(u, v) dudv (3.2)

E[Xγ] =
1

2

∫∫

Rec−D

∫∫

Rec−D

f(u)f(v)g(u, v)I(u, v,D) dudv (3.3)

where g(u, v) = y(u, v)
∫max{capacity}
0

h(c, u, v)c dc is the expected capacity between two

nodes at points u and v (determined by the probability of having a link between them,
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times the expected capacity of this link). I(u, v,D) is the indicator function, giving

one if the segment (u, v) intersects the circle D and zero otherwise.

Denote by X = Xα +Xβ +Xγ, the total damage determined by all the intersected

links with cut D. Due to the linearity of expectation, we get that the total expected

capacity of the intersected links (TEC) is E[X ] = E[Xα] + E[Xβ] + E[Xγ]. Hence,

it is sufficient to evaluate the expected damage caused by each of the 3 types of the

intersected links separately. Summing them all together is the total expected damage

caused by D = cut(p, r).

3.2 Evaluating the Damage of a Circular Cut Al-

gorithm

We present an approximation algorithm EDCC (see pseudo-code in Algorithm 1)

for evaluating the total expected capacity of the intersected links (TEC) of the network

with a circular attack (cut) D in a specific location. Later, we use this algorithm to

find attack locations with the (approximately) highest expected impact on the network.

We give two different approximation analyses for algorithm EDCC output. One is an

additive approximation, and one is multiplicative. Although additive approximations

in general are better than multiplicative, our analysis of the additive approximation

depends on the maximum value of the functions f(·) and g(·, ·) over Rec, where g(·, ·)
stands for the expected capacity between two points u, v ∈ Rec. While the maximum

of f(·) and g(·, ·) over Rec can be high and affect the running time of the algorithm, for

practical uses on ”real-life” network it is usually low enough to make the running time

reasonable. The multiplicative analysis which does not depend on the maximum of f(·)
and g(·, ·) over Rec, depends on the variation bound of f(·)f(·)g(·, ·), namely a constant

M which is an upper bound for the derivative of f(·)f(·)g(·, ·) over Rec. Define an
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Algorithm 1: EvaluateDamageCircularCut (EDCC): Approximation algorithm
for evaluating the damage of a circular cut.

1: capacity procedure EDCC(N, cut(p, r), ǫ)
2: D ← Circle(cut(p, r)) //D is a representation of the circular cut.

3: Grid← ComputeGrid(Rec, r, ǫ)
4: for every u, v ∈ Grid do
5: // Compute the expected capacity between two points u and v:

g(u, v)← y(u, v)
∫max{capacity}
0

h(c, u, v)c dc
6: The following steps are calculated over Grid:
7: E[Xα]← 1

2

∫∫

D

∫∫

D

f(u)f(v)g(u, v) dudv

8: E[Xβ]←
∫∫

Rec−D

∫∫

D

f(u)f(v)g(u, v) dudv

9: E[Xγ ]← 1
2

∫∫

Rec−D

f(u)evaluateGamma(u,D,Grid) du

10: return E[Xα] + E[Xβ] + E[Xγ ]
Procedure evaluateGamma(u,D,Grid)
11: Create two tangents t1, t2 to D going out from u.
12: Denote by Ku the set of points which is bounded by t1, t2, D and the boundary

of the rectangle Rec (see Fig. 3.4).
13: return

∫∫

Ku

f(v)g(u, v) dv

additive ǫ-approximation to the TEC as a quantity C̃ satisfying C − ǫ ≤ C̃ ≤ C + ǫ

for ǫ > 0, where C is the actual expected capacity intersecting the cut. Similarly,

define a multiplicative ǫ, ε-approximation to the cut capacity as a quantity C̃ satisfying

(1− ε)C − ǫ ≤ C̃ ≤ (1 + ε)C + ǫ.

The algorithm uses numerical integration based on the division of Rec into squares

of edge length ∆ (we refer to ∆ as the “grid constant”). The different approximations

are pronounced in the ComputeGrid(Rec, r, ǫ) function in the algorithm, which deter-

mines the grid of constant ∆. Let Grid be the set of these squares center-points. The

algorithm evaluates the integrals numerically, using the points in Grid. Intuitively:

the denser is the grid, the more accurate the results, at the price of requiring addi-

tional time to complete. In section 3.3 we examine the relation between the accuracy

parameter ǫ and the grid constant ∆, this relation determines the implementation of
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Figure 3.4: The area Ku of the shadow by the circular cut from the point u.

ComputeGrid(Rec, r, ǫ) and the running time of our algorithm.

When computing the expectation of the γ-links damage caused by a cut D, we use

the following lemma:

Lemma 3.2.1. For every node u ∈ Rec \D, the set Ku (see lines 11-12 in Algorithm

1 and illustration in Fig. 3.4) satisfies: for every v ∈ Ku, (u, v) intersects D, and for

every w ∈ Rec \ (Ku ∪D), (u, w) does not intersect with D.

Proof. The set, Au bounded by both tangents and the boundary of the rectangle,

containing the circle, is convex, as it is the intersection of convex sets (a triangle and

a rectangle). This set, minus the union of radii from the center of the circle to both

tangents is a disconnected set. The point u belongs to the connected set containing u,

whereas the point v belongs to the connected set Ku, which is is separated from u by

the union of radii. That is, any path between u and v contained in the convex set Au,

must intersect with the union of radii, and thus with the circle.

For any point p ∈ Rec which is not on the tangents’ rays, the line segment (u, p)

is either completely inside Au or completely in Rec \Au (except for point u). For any

point w1 ∈ Rec \Au, since Au is bounded by the rays from u which are tangent to the

circle, it follows that the segment (u, w1) is completely outside Au (except u), and thus
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does not intersect with the circle. The set Su = Au \ (Ku ∪D) is a star domain, such

that for any point w2 ∈ Su the segment (u, w2) is completely contained in Su, and thus

does not intersect with the circle.

Thus, we run over every point u in Grid which is outside the cut, and compute all

possible γ-link damage emanating from u, using procedure evaluateGamma(u,D,Grid).

Summing them all together and dividing by 2, due to double-counting, we get the total

expected γ-link damage.

3.3 Numerical Accuracy and Running Time Anal-

ysis

3.3.1 Geometric Preliminaries

In this section we give theorems regarding the accuracy and the running time of Al-

gorithm 1 (EDCC). The first theorem is in subsection 3.3.2, gives an additive bound

on the error in the calculation of the damage caused by a cut of radius r using nu-

merical integration with grid constant ∆. This gives us the relation between the accu-

racy parameter ǫ and the grid constant ∆. This relation gives the implementation of

ComputeGrid(Rec, r, ǫ) in O(1) by choosing ∆ small enough such that the error will

be not more than ǫ. Then, in Theorem 3.3.4 we give a bound on the running time of

the algorithm for any accuracy parameter ǫ > 0.

In subsection 3.3.3, we give a combined multiplicative and additive bound on the

error for a grid constant ∆, which is different from the additive bound by being inde-

pendent on the maxima of the functions f and g, thus, for a given accuracy parameters

ε, ǫ, one can choose ∆ which is independent on the maxima of the functions f and g,

small enough such that the error will be not more than (1 + ε)C + ǫ, where C is the
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Figure 3.5: t1 and t2 are tangents to a circle of radius ∆ centered at u and to the
circular cut. The colored areas depicts the extremum of difference for possible γ-links
endpoints emanating from a point within the circle centered at u at one side of the cut.

actual TEC of the cut. With this multiplicative-additive approximation we can bound

the running time independently on the maxima of the functions f and g, useful for the

case these maxima are high (usually in ”real-life” networks it is not the case and the

additive approximation will have a reasonable running time, as described in section

3.2).

We restrict our results to the case where ∆ < r/2, as otherwise the approximation

is too crude to consider.

Some technical results are needed for proving the theorems in this section. We first

notice that, given a point u at a distance d from a circular cut, and a point v at a

distance ∆ from u, the difference between the area of endpoints of γ-links starting at

point u to those starting at point v is bounded in the area between (a) the segment from

u to the boundary of Rec tangent to the cut (b) the segment from v to the boundary of

Rec tangent to the cut (c) the boundary of Rec. Plus the area bounded by (a), (b) and

the boundary of the circular cut. Furthermore, the extrema of the area of difference
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Figure 3.6: The area in grey depicts the extremum of difference for possible γ-links
endpoints emanating from a point within the circle centered at u at one side of the cut.
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Figure 3.7: The perpendicular tangents from a point u on the circular cut and from a
point v at distance 2∆ from the circular cut. The area in grey depicts the extremum
of difference for possible γ-links endpoints emanating from u and v at one side of the
cut.
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are obtained in the cases where the segment from v to the boundary of Rec tangent to

the cut is also tangent to the circle centered at u with radius ∆. See Fig. 3.5 and 3.6.

For an accurate numeric bound of the error in the theorems of this section, one

should add a factor of 2 to the results of the following lemmas (to bound also the area

of possible γ-links endpoints obtained by the additional tangents emanating from u

and v to the other side of the circular cut).

Lemma 3.3.1. The area bounded by (a) the tangent at a point u on the circumference

of the circular cut (b) the tangent to the cut from any point v at distance 2∆ from u

(c) the circumference of the cut and (d) the boundary of Rec, is bounded by c
√
∆ for

some constant c. See Fig. 3.7.

Proof. The extremum of the difference between the two tangents is when the tangent

to the circle is also a tangent to the circle of radius 2∆ centered at u, i.e., when the

segment of length 2∆ starting at point u is perpendicular to the tangent at its other

endpoint, v. See Fig. 3.7.

Let q be the point of intersection of the second tangent and the circular cut, and

let w be the point of intersection between the two tangents. Let p be the center of the

circle. We have ∠upw = ∠wpq = α and angle ∠uwv = 2α.

Let b = d(u, w) = d(w, q) and d(w, v) = a =
√
b2 − 4∆2. We have tanα =

b/r, where r is the radius of the circle, and tan 2α =
2∆√

b2 − 4∆2
. Using tan 2α =

2 tanα/(1− tan2 α) one obtains b2 = (∆2r2 +∆r3)/(r2 −∆2). Thus, r∆ ≤ b2 ≤ 2r∆.

Assume that both tangents hit the same side of Rec, the area of the triangle bounded

by both tangents and the boundary of Rec is bounded by

1

2
D2 sin 2α ≤ D2 sinα ≤ D2 tanα ≤ D2

√

2∆

r
, (3.4)

where D is the diagonal of Rec. Now, if the tangents hit different sides of Rec, there

are two cases:
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If they hit perpendicular sides, then the area bounded by them and the sides is a

quadrangle, taking a line segment from the corner point of Rec which is the intersection

of the perpendicular sides to w we triangulate this area, obtaining two triangles. The

angle, near point w of each triangle is bounded by 2α which is bounded by π/2, since

we assume ∆ < r/2. Thus from (3.4) the area is bounded by 2D2

√

2∆

r
.

If the tangents hit parallel sides we can triangulate the area bounded by them and

the sides, by taking two line segments from the corners of Rec within this area to the

point w, obtaining three triangles. Using similar arguments as the previous case, we

obtain that the area is bounded by 3D2

√

2∆

r
.

Finally, the area bounded by the segments uw and wq and the circular arc uq is

bounded by the area of triangle △uwq, which, in turn is bounded by b2 ≤ 2r∆ ≤

D2

√

2∆

r
.

Lemma 3.3.2. For a point u at a distance d from a circular cut cut(p, r) and a given

∆ > 0, the area between the circumference of the cut, the boundary of Rec, the tangent

to the cut from u and the tangent to the cut from a point v located at a distance ∆

from u is bounded by c
√
∆ for some constant c. See Fig. 3.6.

Proof. Let w be the point of intersection between the two tangents (from point u to

the cut and from point v to the cut). We have sin(∠uwv) = ∆/(
√

(r + d)2 − r2 + b),

where b is the distance between the point of intersection of each of the tangents with

the cut and the point w. we have sin(∠uwv) = ∆/(
√
2rd+ d2 + b).

Now for d < ∆ the point v is located within a distance of d + ∆ < 2∆ from the

circumference of the cut, and the Lemma follows from Lemma 3.3.1.

If d > ∆ we have sin(∠uwv) < ∆/(
√
2rd) < ∆/(

√
2r∆). Thus, if the tangents hit

the same side of Rec the triangular area between the tangents and the side is bounded

by D2
√

∆/r where D is the diagonal of Rec.

If the tangents hit different sides, then we can triangulate the area bounded by them
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and the sides similarly as in Lemma 3.3.1. Denote by α = ∠uwv the angle between

the two tangents. For each triangle, the angle near point w is bounded by α which is

bounded by π/2 (since we assume ∆ < r/2). Thus, the area bounded by the tangents

and Rec (which is not containing the circle) is bounded by 3D2
√

∆/r.

Similarly to Lemma 3.3.1 the area between the two tangents and the circle is also

bounded by b2 sin(π − ∠uwv) = b2 sin(∠uwv) <
√
2r3∆, as b < r since both tangents

intersect the same quadrant of the cut.

3.3.2 Additive Approximation

Theorem 3.3.3. For a grid of constant ∆, a point p ∈ Rec, and the result C̃ for

cut(p, r) obtained by Algorithm 1, it holds that C − ǫ < C̃ < C + ǫ, where C is the

actual TEC value for cut(p, r), and ǫ = c0 ·
√
∆ for some constant c0 > 0 that depends

on the maximum values of f(·) and g(·, ·), their variation bound, the sides of Rec and

the radius r.

Proof. By standard arguments on numerical integration the error in calculating the

integral over any region is bounded by M∆ times the area of integration (that is

bounded by the area of Rec, |Rec|), where M is a bound on the variation rate for f(·),
g(·), and the product f(·)f(·)g(·, ·) over Rec. Additionally, the cumulative error value

|C − C̃| consists of the following:

Any point in a grid square is within a distance of ∆/
√
2 < ∆ of the grid point

(square center). The additional difference in the integral over α and β links is bounded

by the integral over the area of inaccuracy around the circular cut (grid squares which

are partially in the cut and partially outside). This is bounded by an annulus of radii
[

r −∆/
√
2, r +∆/

√
2
]

around the center of the circular cut of area 2
√
2πr∆. Thus,

we obtain an error which is bounded by 2
√
2πr∆T |Rec|, where T is a bound on the

maximum value of f(·), g(·), and the product f(·)f(·)g(·, ·) over Rec.
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The additional error is in the calculation of γ-links, and obtained in three terms,

one term is determined in the procedure evaluateGamma(u,D,Grid) where the area of

inaccuracy is around Ku (grid squares which are partially in Ku and partially outside).

This area is bounded by 2
√
2D∆ where D is the diagonal length of Rec. This gives an

error term which is bounded by 2
√
2D∆T |Rec|.

The second error term in the γ-links calculations is obtained by considering the

change in the functions f(u) w.r.t f(w), and g(u, ·) w.r.t g(w, ·) in Ku ∩ Kw, for a

point w within distance ∆ from u. For convenience, for a point u, denote f̃u(v) =

f(u)f(v)g(u, v). Taking into account the change in the integrated function f̃u(v) and

fw(v) overKu∩Kw, for a point w within distance ∆ from u, we obtain an error, bounded

by
∫∫

Ku∩Kw

(

f̃u(v) +M∆
)

dv−
∫∫

Ku∩Kw

f̃u(v) dv ≤
∫∫

Ku∩Kw

M∆ dv ≤ M∆|Rec|. Thus, obtain-

ing an error bounded by ∆M |Rec|2.
The third, and the most significant error term, is obtained using Lemma 3.3.2 which

implies that for any point u ∈ Rec \D in a grid square (except grid squares which are

partially in D and partially outside), the area of symmetric difference between Ku and

Kw for the grid point (square center) w nearest to u (such that the euclidean distance

d(u, w) < ∆) is bounded by a
√
∆, where a is some constant (see subsection 3.3.1),

depending on the radius of the cut r and the sides of the rectangle Rec. Thus, we

obtain an error bounded by a|Rec|T
√
∆.

Taking into account the errors in this numerical integration from all terms above,

one obtains that the leading term in the error, as ∆→ 0, is |C−C̃| ≤ constD2|Rec|T
√

∆

r
,

where D is the diagonal length of Rec (see subsection 3.3.1). Thus, the accuracy de-

pends on
√
∆, as well as on the sides of the rectangle, the radius of the cut, the maxima

of f(·), g(·, ·) and their variation bound in Rec.

Using Theorem 3.3.3 and the given in subsection 3.3.1, ComputeGrid(Rec, r, ǫ)

function in the algorithm can be implemented by selecting the value of ∆ guaranteeing
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that the additive error will be at most ǫ. We now give a bound on the running time of

the EDCC algorithm for any additive accuracy parameter ǫ > 0.

Theorem 3.3.4. For a Rec of area A with diagonal length D, attack of radius r, and

an additive accuracy parameter ǫ > 0, the total running time of Algorithm 1 (EDCC)

is O

(

A10D16T 8

ǫ8r4
+
A10T 4M4

ǫ4

)

, where T is a bound on the maximum value of f(·),
g(·), and the product f(·)f(·)g(·, ·) over Rec, and M is a bound on the variation rate

for these functions over Rec.

Proof. The algorithm is based on performing numerical integration over pairs of grid

points (square-center points). The denser is the grid, the more pairs of points we have

in the grid, thus the running time is determined by the grid constant ∆ (the squares’

side length) which is set by ComputeGrid(Rec, r, ǫ) function at the beginning of the

algorithm. The number of grid points in the rectangle is A/∆2. Thus the running time

is at most proportional to the number of pairs of grid points, which is O (A2/∆4).

Now, from the given in subsection 3.3.1 and the proof of Theorem 3.3.3 we obtain

that as ∆→ 0

ǫ = O

(

D2AT

√

∆

r
+∆MA2

)

Thus, when M = O

(D4T 2

ǫr

)

(reasonable in practical usages), ∆ = Ω

(

ǫ2r

D4A2T 2

)

,

and the total running time of the algorithm is

O
(

A2/∆4
)

= O

(

A10D16T 8

ǫ8r4

)

.

Otherwise, if M = ω

(D4T 2

ǫr

)

, we obtain that ∆ = Ω
( ǫ

MA2

)

, and the running time

of the algorithm is

O

(

A10M4

ǫ4

)

.
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3.3.3 Multiplicative Approximation

Since the constant in Theorem 3.3.3 depends on the maximum value of the functions f

and g, which may be undesirable in case these maxima are high, we have the following

theorem, giving a combined additive and multiplicative accuracy with the constants

independent of the maxima of f and g. Using the following Theorem 3.3.5, the function

ComputeGrid(Rec, r, ǫ) can be modified to a new function ComputeGrid(Rec, r, ǫ, ε)

which can be implemented by selecting the value of ∆ guaranteeing that the additive

error will be at most ǫ and the multiplicative error will be at most ε, as described in

the following theorem.

Theorem 3.3.5. For a grid of constant ∆, a point p ∈ Rec, and the result C̃ for

D = cut(p, r) obtained by Algorithm 1, it holds that (1− ε)C − ǫ < C̃ < (1 + ε)C + ǫ,

where C is the actual TEC value for cut(p, r), for ǫ = c1 ·
√
∆, ε = c2 ·

√
∆, such that

c1 and c2 depend only on Rec, r, and M the bound on the variation of f(·), g(·), and
f(·)f(·)g(·, ·) over Rec, but are independent on their maximum values.

Proof. From the proof of Theorem 3.3.3, the standard error in the numerical integration

over the grid depends only on the grid constant ∆, the radius of the cut r, and the

bounded variation rate M of the integrated function.

For a point u ∈ Rec \D and the closest grid point w ∈ Rec \D nearest to u (with

a distance at most ∆ from each other), denote by R′ the segment of the tangent going

out from u to one side of D within Rec, similarly, denote by R the segment of the

tangent going out from w to the same side of D within Rec. Denote by R(x) the point

on R with coordinate x, and similarly for R′(x), where the x-axis is taken to be the

line that does not intersect with D and going through the angle bisector for the angle

between R and R′ 1. By the proof of Lemma 3.3.2 we obtain that the euclidean distance

1There are two pairs of vertical angels by formed by the intersection of R with R′ and thus, two
angle bisectors, the angle bisector of one pair is intersecting the cut and the other does not intersecting
the cut, we refer to the pair of which their angle bisector does not intersect the cut.
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||R′(x)−R(x)|| satisfies ||R′(x)−R(x)|| < a
√
∆ for any x ∈ Rec, where a is a constant

depending on the sides of Rec (see subsection 3.3.1), this is obtained directly from the

proof of Lemma 3.3.2 by using similarity of triangles properties. For convenience, for a

point u, denote f̃u(v) = f(u)f(v)g(u, v), and write it in Cartesian coordinates fu(x, y)

(with respect to the axis described above). The TEC from β − links and γ − links
going out from w is bounded by

∫∫

Ku∪D

f̃u(x, y) dxdy +

∫

dx

R(x)
∫

R(x)−a
√
∆

(

f̃u(x, y) +M(a
√
∆+∆)

)

dy,

thus, the difference between the TEC values of β− links and γ− links emanating from

u to β − links and γ − links emanating from w is bounded by

∫

R(x)
∫

R(x)−a
√
∆

(

f̃u(x, y) +M
√
∆(a +

√
∆)
)

dxdy (3.5)

Taking strips of length a
√
∆ we obtain the following:

∫

R(x)
∫

R(x)−a
√
∆

(

f̃u(x, y) +M
√
∆(a+

√
∆)
)

dxdy ≤
∫

R(x)−a
√
∆

∫

R(x)−2a
√
∆

(

f̃u(x, y) +M
√
∆(2a+

√
∆)
)

dxdy

≤
∫

R(x)−2a
√
∆

∫

R(x)−3a
√
∆

(

f̃u(x, y) +M
√
∆(3a+

√
∆)
)

dxdy ≤ · · · (3.6)

Note that
∫∫

Ku∪D

f̃u(x, y) dxdy ≥
∫

R(x)
∫

R(x)−2r

f̃u(x, y) dxdy (3.7)

Thus, when integrating over Ku ∪ D by summing integrations of strips with length

a
√
∆, at least

2r

a
√
∆

such strips are needed.
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Now, taking the average of the sequence (3.6) of length
2r

a
√
∆

(note that we allow

a fraction of an element, e.g., the sequence can be a less than one long) and (3.7) we

obtain that the difference between the TEC values given in (3.5) is bounded by

a
√
∆

2r





∫∫

Ku∪D

f̃u(x, y) dxdy +

∫

R(x)
∫

R(x)−a
√
∆

M
√
∆(a+

√
∆) dxdy

+ · · ·+
∫

R(x)−2r+a
√
∆

∫

R(x)−2r

M
√
∆(

2r

a
√
∆
a+
√
∆) dxdy







≤ a
√
∆

2r

∫∫

Ku∪D

f̃u(x, y) dxdy + aMD
√
∆(r + a

√
∆+∆), (3.8)

where D is the diagonal length of Rec.

Thus, in leading terms, as ∆ → 0, we obtain an error with multiplicative factor
a

2r

√
∆ and an additive term of aMrD

√
∆ between the two TEC values. Using similar

techniques, one can bound the error obtained by the areas of inaccuracy:

(i) Grid squares that are partially in cut D and partially outside. This error can

be bounded using similar methods when representing the integrated function in polar

coordinates with respect to the center of D. Since this area is bounded by an annulus

of radii
[

r −∆/
√
2, r +∆/

√
2
]

around the center of D, we can take strips of length

∆. Thus, this can be bounded by a multiplicative factor of b∆ and additive term of

c∆ for b and c which are depended linearly on the radius r.

(ii) For a node u ∈ Rec \ D, grid squares that are partially in Ku and partially

outside. This area is bounded by 2
√
2D∆. Thus, using similar methods, we can take

strips of length ∆, obtaining an error bounded by a multiplicative factor of b′∆ and

additive term c′∆, for b′ and c′ which are depended linearly on D.
Overall, the total accumulated error obtained by the modified Algorithm 1, in

leading terms as ∆→ 0, is with multiplicative factor
a|Rec|
2r

√
∆ and an additive term
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of aMrD|Rec|
√
∆, where a ≤ constD2 1√

r
(see subsection 3.3.1).

The following theorem gives a bound on the running time of the modified EDCC

algorithm, independent of the maxima of f and g.

Theorem 3.3.6. For a Rec of area A with diagonal length D, attack of radius r, a

multiplicative accuracy parameter ε > 0 and an additive accuracy parameter ǫ > 0, the

total running time of the modified Algorithm 1 (EDCC) is O

(

A10D16

ε8r12
+
A10D24M8

ǫ8r4

)

where M is a bound on the variation rate of f(·), g(·), and f(·)f(·)g(·, ·) over Rec.

Proof. As described in the proof of Theorem 3.3.4, the number of grid points in the

rectangle is A/∆2. Thus the running time is at most proportional to the number of

pairs of grid points, which is O (A2/∆4).

From the proof of Theorem 3.3.5, we obtain that as ∆→ 0

ε = O

(D2A2

r1.5

√
∆

)

,

ǫ = O
(

M
√
rD3A

√
∆
)

.

Thus, if ∆ = Ω

(

ε2r3

D4A2

)

, the total running time of the algorithm is

O
(

A2/∆4
)

= O

(

A10D16

ε8r12

)

.

Otherwise, ∆ = Ω

(

ǫ2r

M2D6A2

)

and the total running time of the algorithm is

O

(

A10D24M8

ǫ8r4

)

.
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Chapter 4

Find Sensitive Locations Scheme

4.1 Sensitivity Map for Circular Attacks and Max-

imum Impact

In the previous chapter we showed how to evaluate the damage of a cut D in a specific

location. Using Algorithm 1 (EDCC) one can approximate the TEC for a circular

attack at every point, and in particular, find an approximated worst case attack (one

with the highest TEC value).

To achieve this goal, we divide Rec into squares, forming a grid. Then, we execute

EDCC algorithm from the previous section for every grid point (squares center-points)

such that it is a center-point of a circular cut of radius r. This leads to a “network

sensitivity map”, i.e., for every point we have an approximation of the damage by a

possible attack in that point.

The approximated worst cut is given by taking the point with the highest TEC

value among all the centers of grid squares. The actual worst case cut can be poten-

tially located at any point within the grid squares whose centers’ calculated TECs are

approximated by the EDCC algorithm. To guarantee an attack location with TEC of

33



Algorithm 2: FindSenstiveLocations (FSL): Approximation algorithm for the
network sensitivity map under a circular attack

1: For a network N , a cut of radius r, and accuracy parameter ǫ > 0 , apply the
function computeGrid(Rec, r, ǫ/2) to find ∆ > 0 such that the accuracy of
Algorithm 1, given by Theorem 3.3.3 is ǫ/2.

2: Form a grid of constant ∆ (found in step 1) from Rec. For every grid point p,
apply procedure EDCC(N, cut(p, r), ǫ/2). The grid point with the highest
calculated TEC is the center of the approximated worst cut.

at least C − ǫ where C is the TEC of the actual worst cut and an accuracy parameter

ǫ > 0, we provide algorithm FSL (see pseudo-code in Algorithm 2).

We now prove the correctness of Algorithm 2 (FSL).

Theorem 4.1.1. For an accuracy parameter ǫ > 0, the attack with the highest TEC

value C̃ found by the above algorithm satisfies C̃ ≥ C − ǫ, where C is the TEC value

for the actual worst cut.

Proof. By Theorem 3.3.3 for every ǫ′ > 0 one can find a grid constant ∆ > 0 such

that for any point p ∈ Rec the TEC value of cut(p, r) obtained by algorithm EDCC

is within ǫ′-accuracy (additive) from the actual TEC value of cut(p, r).

For any cut located at a grid point, take a cut located at some other point within

the grid square, so it is within a distance d < ∆ from the center of the square. The

difference between the TEC for these two cases is exactly the same as in the symmetric

case, where the functions f , g and the grid, are shifted a distance d in the other

direction. Thus, using similar arguments as in the proof of Theorem 3.3.3, we obtain

that the difference is at most ǫ′. Taking ǫ′ = ǫ/2 completes the proof.

The following theorem determines the running time of Algorithm 4.1.2 for an ad-

ditive accuracy parameter ǫ > 0.

Theorem 4.1.2. For a Rec of area A with diagonal length D, attack of radius r, and

an additive accuracy parameter ǫ > 0, the total running time of Algorithm 2 (FSL)
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is O

(

A15D24T 12

ǫ12r6
+
A15M6

ǫ6

)

, where T = maxu,v∈Rec {f(u)f(v)g(u, v)}, and M is the

supremum on the variation rate of f(·)f(·)g(·, ·) over Rec.

Proof. The algorithm first determines a grid constant ∆ such that the accuracy of

Algorithm 1, given by Theorem 3.3.3 is ǫ/2. Then samples a circular cut of radius r

at the center point p of each grid square. For each such cut, the algorithm executes

EDCC(N, cut(p, r), ǫ/2) in O(A2/∆4) time. The grid has O (A/∆2) points. Thus the

total running time is at most O (A3/∆6).

Now, from the proof of Theorem 3.3.4 we obtain that when M = O

(D4T 2

ǫr

)

,

∆ = Ω

(

ǫ2r

D4A2T 2

)

,

and thus, the total running time of the algorithm is

O(A3/∆6) = O

(

A15D24T 12

ǫ12r6

)

.

Otherwise, if M = ω

(D4T 2

ǫr

)

, we obtain that ∆ = Ω
( ǫ

MA2

)

, and the running time

of the algorithm is O

(

A15M6

ǫ6

)

.

Algorithm 2 can be modified to give a multiplicative approximation which is in-

dependent of the maxima of f and g (over Rec), by using the modified function

computeGrid(Rec, r, ǫ/2, ε/2) and the modified EDCC algorithm (as described in

subsection 3.3.3). The correctness of this algorithm is obtained similarly as in Theo-

rem 4.1.1. For the running time we provide the following theorem.

Theorem 4.1.3. For a Rec of area A with diagonal length D, attack of radius r, a

multiplicative accuracy parameter ε > 0 and an additive accuracy parameter ǫ > 0,

the total running time of the modified FSL algorithm is O

(

A15D36M12

ǫ12r6
+
A15D24

ε12r18

)

,
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where M is a bound on the variation rate of f(·), g(·), and the product f(·)f(·)g(·, ·)
over Rec.

Proof. As described in Theorem 4.1.2, the total running time is at most O (A3/∆6).

Now, for the modified EDCC algorithm described in subsection 3.3.3, we obtain by

the proof of Theorem 3.3.6 that the grid constant ∆ satisfies ∆ = Ω

(

ε2r3

D4A2

)

or (the

asymptotic minimum) ∆ = Ω

(

ǫ2r

M2D6A2

)

Thus, the total running time of the modified FSL algorithm is

O

(

A15D36M12

ǫ12r6
+
A15D24

ε12r18

)

.

4.2 Random Attacks

The impact of a random circular cut to deterministic network was recently studied

(see section 1.2). The random location of a disaster can model failure resulting from

a natural disaster such as a hurricane or collateral (non-targeted) damage in an EMP

attack. An interesting question is to evaluate the expected impact of a random circular

cut to our stochastic network model.

Algorithm 1 (EDCC) gives an approximation for the expected damage caused by a

circular cut which is located at a specific point. We can use it to develop an algorithm

for evaluating the damage caused by a random circular cut, using a similar concept as

in Algorithm 2 (FSL).

For a random circular cut distributed uniformly over Rec, an additive approxima-

tion of the expected damage caused by such a random cut to our stochastic network

model is given by
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Algorithm 3: RandomCircularCutEvaluation (RCCE): Approximation algo-
rithm for evaluating the expected damage caused by a random circular attack.

1: For a random network N , a random cut of radius r, distributed uniformly over
Rec, and an additive accuracy parameter ǫ > 0, apply the function
computeGrid(Rec, r, ǫ/2) to find ∆ > 0 such that the accuracy of Algorithm 1,
given by Theorem 3.3.3 is ǫ/2.

2: Form a grid of constant ∆ (found in step 1) from Rec. Denote by Grid the set
of grid points (square centers).

3: return 1
|Rec|

∑

p∈GridEDCC(N, cut(p, r), ǫ/2)

1

|Rec|

∫∫

Rec

EDCC(N, cut(p, r), ǫ′) dp. (4.1)

For a given additive accuracy parameter ǫ > 0, the idea is to evaluate the above equa-

tion numerically over a grid, with a grid constant ∆ small enough, and an appropriate

ǫ′, such that the total additive error will be at most ǫ. This is provided in Algorithm

RCCE (see pseudo-code in Algorithm 3).

Similarly as in Algorithm 2 (FSL), by the proof of Theorem 4.1.1, we obtain that

the grid constant ∆, chosen in Algorithm 3 guarantees that for two cuts of radius r,

located at points u and v within euclidean distance at most ∆ from each other, the

difference in the TEC value for these two cuts is at most ǫ. Thus, when evaluating

(4.1) numerically in Algorithm 3, the total error is at most
1

|Rec| · |Rec| · ǫ = ǫ. Thus,

the correctness of Algorithm 3 is obtained similarly as for the FSL algorithm, given

by Theorem 4.1.1. The running time of Algorithm 3 is also the same as for the FSL

algorithm, given by Theorem 4.1.2.

Using the multiplicative approximation with the modified EDCC algorithm and

the modified function computeGrid(Rec, r, ǫ/2, ε/2) (as described in subsection 3.3.3),

a similar result with running time as in Theorem 4.1.3 can be obtained for a combined

multiplicative and additive approximation of the worst-case cut, independent of the
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maxima of f and g over Rec.

A random circular cut can be modeled more generally when its location is dis-

tributed with some distribution function with density ψ over Rec. Similarly to the

uniform case, an approximation of the expected damage caused by such a random cut

to our stochastic network model is given by

∫∫

Rec

ψ(p)EDCC(N, cut(p, r), ǫ′) dp. (4.2)

For a random circular cut distributed with density function ψ(p) over Rec, such that ψ

is a function of bounded variation over Rec, A multiplicative approximation algorithm

can be obtained by applying similar techniques as in Algorithm 3 and Algorithm 2,

choosing the grid constant ∆ small enough, such that multiplicative error factor will

be at most ǫ. The approximation and running time in this case depends also on the

supremum on the variation rate of ψ over Rec (which was zero in the uniform case), due

its contribution to the (multiplicative) accumulated error when evaluating numerically

the integral (4.2) over the grid.

4.3 Simulations and Numerical Results

In order to test our algorithms, we estimate the expected impact of circular cuts on

communication networks in the USA based on a population density map. We imple-

mented the algorithm as a C program. Data for the population density of the USA

taken from [20] was taken as the intensity function f(u). The supplied data is the ge-

ographic density of the USA population at a resolution of 30”, which is approximately

equivalent to 0.9km. The matrix given was of dimensions 3120× 7080. See Fig. 4.1.

In order to achieve faster running times, the data was averaged over 30×30 blocks,

to give a resolution of approximately 27km. This gave a matrix of dimensions 104×236.
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Figure 4.1: Color map of the the USA population density in logarithmic scale. Data
is taken from [20].

The algorithm was then run over this intensity function. The function y(u, v) was taken

to be 1/dist(u, v) , where dist is the Euclidean distance between the points, based on

observations that the lengths of physical Internet connections follow this distribution

[5]. The capacity probability function h was taken to be constant, independent of the

distance, reflecting an assumption of standard equipment. Each run took around 24

hours on a standard Intel CPU computer.

Results for different cut radii are given in Fig. 4.2, Fig. 4.3 and Fig. 4.4. As can be

seen , the most harmful cut would be around NYC, as expected, where for the larger

cut radius, a cut between the east and west coast, effectively disconnecting California

from the north-east, would also be a worst case scenario. Lower, but still apparent

maxima are observed in the Los-Angeles, Seattle and Chicago areas.

Comparing the results to the results obtained for the fiber backbone in [32] (see

Fig. 1.2) it can be seen that some similarities and some dissimilarities exist.
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Figure 4.2: Color map of the centers of circular cuts with radius r = 5 (approximately
130km). Red is most harmful.
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Figure 4.3: Color map of the centers of circular cuts with radius r = 8 (approximately

208km). Red is most harmful.
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Figure 4.4: Color map of the centers of circular cuts with radius r = 10 (approximately
260km). Red is most harmful.

While the NYC maxima is apparent in all measures, California seems to be missing

from the maxima in [32], probably reflecting the low density of fibers in that area in

the map studied in [32]. As many fibers may exist that are not represented on the

map in [32], it may be reasonable to assume that a cut around California would have a

more significant effect than reflected there. On the other hand, several worst case cuts

in Texas, and especially in Florida are apparent in [32] and are missing in the current

simulation results. It seems that the effect of the narrow land bridge in Florida makes

cuts there especially harmful, whereas our simulation assumes links are straight lines,

which will make links to both east and west coast pass through the ocean, thus making

cuts less harmful.

As a full map of communication lines is not available, it is still unclear how good of

an approximation the results here supply. However, the tool can be used in conjunc-

tion with more complicated modeling assumptions, including topographic features and

economic considerations to give more exact results.
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Chapter 5

Probabilistic Stations’ Locations

Model

5.1 Background

This section relates to a different model than the model we studied in previous chap-

ters. To avoid confusions, this chapter should be seen as another research result, not

directly connected to previous chapters of this work. This section is based on a model

that involves randomness only on the locations of the nodes with very specific assump-

tions, such as that the number of nodes is known, and it is given whether there is a

link between two nodes and its capacity value. Furthermore, each node is probabilis-

tically distributed independently in a specific given geographical area. The model was

proposed by Eytan Modiano and his student Jianan Zhang. 1 When the model and

problems were proposed, it was very preliminary and under very specific assumption,

yet algorithms for the problems were not known.

1The model was presented to me when I was visiting Prof. Eytan Modiano at the Massachusetts
Institute of Technology (MIT) in Feb. 2013, for presenting my results about the random model we
proposed (see chapter 2) as given in the previous chapters of this thesis.
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We formalized a more generalized version of their model, loosing some of the as-

sumptions, and showed that with few modifications, the algorithm proposed in [2] for

the Probabilistic Failures model, can be used for finding worse-case cuts with respect

to nodes under our model. Until the finalization of this thesis, and to the best of

our knowledge, the problem of finding worst-case cuts with respect to links under this

model remains open.

We note that our work on random networks as given in this thesis in the previous

chapters is based on a different model (as stated in chapter 2) which present different

type of randomness than the model we describe in this chapter, as in previous chapters

we do not assume the number of nodes is given, and the existence of links and capacity

rates are also probabilistically distributed. The model in previous chapters is motivated

by the problem of assessing the vulnerability of the network when the attacker does

not possess complete information about the network’s geographical layout, but can

model the network from data such as demographic maps, topographic maps, economy

maps, etc., while the model described in this chapter is more limited by the assumptions

made, assuming randomness in a more restricted manner by assuming that the attacker

possesses specific significant information on the geographical layout of the network, but

does not possess other specific significant information (nodes’ locations).

Although our model from previous chapter may be adapted to solve the goals of

the model described in this chapter, we find it interesting to tackle their model as is,

which is not assuming distribution of nodes through a spatial Poisson point process,

as it may rise an interesting algorithmic challenge.

In the next section we present our generalized version of their model, then in sec-

tion 5.3, we demonstrate an approximation algorithm for finding worse-case cuts with

respect to nodes for this model, based on a variation on the algorithm presented in [2].
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5.2 Probabilistic Stations’ Locations Model and Prob-

lem Statement

We consider a Communication Network in the plane R
2 with probabilistic stations’

locations. Consider a finite set of nodes in the plane as stations and links as cables

that connect stations. Links are represented by a line segment. It is given whether

there is a link between two stations i and j, and each such link is associated with its

capacity cij.

Let wu be the weight associated with a node u, which allows us to define various

measures, such as the total capacity going through u, the load u can carry or other

measures correlated with the geographical importance of u. In this probabilistic model,

the number of nodes n is known, and each node u is probabilistically distributed

independently within a circular region C(u) ⊆ R
2 centered in cu. Each circle C(u)

induces a spatial probability distribution with density gu(), specifying the probability

for the existence of u at each location.

A circular attack pr is defined by its center-point p and its radius r. For a node

u with C(u) centered in cu and an attack pr, let fu(u, pr) be the probability that the

node u is affected by the attack pr. One likely example is where fu(u, pr) depends on

the distance from p to cu.

We consider only non-increasing functions fu(·, ·) of the distance between the at-

tack’s epicenter and a network’s component, and with constant description complexity.

Note that fu(·, ·) depends on the spatial probability distribution of u, thus gu() satis-

fies this assumption as well. Intuitively, these are functions that can be expressed as a

constant number of polynomials of constant maximum degree, or simple distributions

like the Gaussian distribution.

For example, for an attack pr and node u denote the intersection area R = pr∩C(u),
so fu(u, pr) =

∫∫

R

gu(u) du is the probability that u is affected by pr. It is reasonable to
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assume that fu(u, pr) can be computed easily as a function of the distance from cu to

pr.

Our goal is to find an attack location which has the highest expected impact on

the network, where the impact is measured either by the number of failed components

(e.g. nodes or links), or by the total weight of failed components.

For a set of components Q and an attack pr, let Φ(Q, pr) denote the expected

number (or alternatively, weighted sum) of components of Q affected by the attack pr.

By linearity of expectation, we get

Φ(Q, pr) =
∑

u∈Q
wufu(u, pr).

Our goal is to find a point p ∈ R
2 that maximizes Φ(Q, pr).

5.3 FPTAS for the Expected Vertices-Worst-Cut

We describe the idea for developing a FPTAS for finding a location with the highest

impact with respect to the networks’ nodes. The algorithm is based on an algorithm

proposed in [2] for the Probabilistic Failures model. We show that with few modifica-

tions it can adapt to our model. Thus, we first give an overview about Probabilistic

Failures model and an algorithm proposed in [2].

Probabilistic Failures Model and Algorithm Overview With difference from

our proposed Probabilistic Stations’ Locations model where each node is probabilisti-

cally distributed over a specific region, in [2] they formalized the Probabilistic Failures

model where the network is deterministic, but the attack induces a spatial probability

distribution on the plane, specifying the damage probability at each location. For a

network component (i.e. node or link) q, given at attack location p ∈ R
2, let f(q, p)
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be the probability that q is affected by p. Usually f(q, p) is given, or can be computed

as a function of the distance from p to q. Considering probability functions f(·, ·)
with similar assumptions as we stated on the probability function in the Probabilistic

Stations’ Locations model. (e.g., constant description complexity). Similarly as stated

in the Probabilistic Stations’ Locations model, each network component q is associated

with weight wq, which allows to define various measures.

The goal is the similar to other problems, to find an attack location (or a set of

locations) which has the highest expected impact on the network.

For a set of components Q and an attack pr, let Φ(Q, pr) denote the expected

number (or alternatively, weighted sum) of components of Q affected by the attack pr.

By linearity of expectation, we get

Φ(Q, pr) =
∑

u∈Q
wuf(u, pr).

Now we want to find a point p ∈ R
2 that maximizes Φ(Q, pr). The super-level-set

of a function f(q, ·) with respect to a real value y is the set of points p ∈ R
2 such

that f(q, p) ≥ y. Given an accuracy parameter ǫ ∈ (0, 1), and a set of components Q,

the algorithm first determines a monotonically decreasing vector Y of level values. For

each level value in Y , and each network element q, the super-level-sets of f(q, ·) are

constructed. Note that a point can be in multiple super-level-sets. Next, each super-

level-set is a geometric region surrounding q. Note that the region corresponding to

some level value y contains all super-level-sets of values y′ < y. Intuitively, the number

of level values determines the accuracy and the running time of the algorithm: the

more level values we have, the more accurate the results are at the price of additional

time to complete.

The next step is to find a point which maximizes Φ (up to some error). In the case

when all weights correspond to 1, this is the point that belongs to the largest number of
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super-level-sets, each might correspond to a different network element (depending on

the vector Y , we might count the number of super-level-sets as a weighted sum). In the

case of different weights, each region of component q can conceptually be viewed as wq

coinciding regions. Thus, having essentially the same problem. Finding a point which

belongs to the largest number of regions (usually, referred to as a point of maximum

depth) is a well-studied problem in computational geometry.

The algorithm presented in [2] returns a point p such that Φ(Q, pr) ≥ (1−ǫ)Φ(Q, p∗)
where p∗ = argmaxp∈R2Φ(Q, pr) (namely, the optimal attack location), and 0 < ǫ < 1.

The basic idea of the algorithm presented in [2] is to define the arrangement of

super-level-sets which is the subdivision of the plane into vertices, arcs and faces. Then,

for every vertex p of the arrangement computing Φ(Q, pr) and taking the maximum.

The technique appears in details in [2], and takes total time of O(mlogm+χ) where

m is the number of components and χ is the total number of vertices, arcs, and faces

in the arrangement. For an accuracy parameter ǫ > 0, χ = O(m
2

ǫ2
log2m).

We note that recently, Agarwal, Kaplan, and Sharir presented in [3] an improved

Monte Carlo algorithm for this problem that for 0 < ǫ < 1 returns a location p

such that Φ(Q, pr) ≥ (1 − ǫ)Φ(Q, p∗) where p∗ = argmaxp∈R2Φ(Q, pr) with runtime

O(ǫ−4mlog3m) where m is the number of links. As it turns out, the problem can be

reduced to the problem of estimating the maximal depth in an arrangement of ‘random

Minkowski sums’ of the form considered in [3].

In [2] they also gave a more generalized algorithm, allowing compound components.

A compound component is a network component compounded from simple compo-

nents such as nodes or links. Mainly motivated for assessing lightpaths vulnerability.

A lightpath is a compound component consists of an ordered sequence of links, and

considered to be unusable if at least one of its component links is affected by the at-

tack. This generalization is mentioned in section 5.4, where we discuss about finding

a “worst-cut” with respect to links.
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C(u)

cu

Figure 5.1: Example of the region C(u) of node u with 3 super-level-sets.

Expected Vertices-Worst-Cut Algorithm under the Probabilistic Stations’

Locations Model For finding a worst-case circular cut with respect to the network’s

nodes, i.e. an attack location which affect the largest number of nodes, or for the

weighted case, the highest weighted sum of the affected nodes. The modifications

needed is in the definition of the super-level-sets, as now we construct them around each

node’s distribution region (whereas in the original algorithm they were built around

the links). Also, each node u has its own probability function fu(·, ·) which may be

different for each node. Thus, we have n probability functions fui
(·, ·), i ∈ [n] and not

necessarily identical. Therefore the definition of Φ is a bit different as stated previously.

For a node u, the super-level-set of a function fu(u, ·) with respect to a real value y

is the set of points p ∈ R
2 such that fu(u, p) ≥ y. The vector Y is being set similarly

as for the Probabilistic Failures model. For a node u, each super-level-set induces a

geometric region around C(u). Figure 5.1 depicts an example of 3 super-level-sets

induced by a node’s u region C(u). Figure 5.1 can be interpreted where C(u) induces a

uniform distribution for the location of u or Gaussian distribution; each contour defines
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the edge of a super-level-set.

Next step is to find a point which maximizes Φ (up to some error) That is done

similarly as in the original algorithm described previously.

5.4 Links and Compound Components

In previous section we talked about finding a “worst-cut” with respect to vertices.

However, note that using the same technique for links (i.e. fibers) is harder, as the link

is determined by its two endpoints which their locations is probabilistically distributed,

thus, the description complexity of f may not be a constant, thus computing the super-

level-sets for the links might be difficult. Moreover, super-level-sets of links with a

common endpoint are dependent, which might make the problem even harder.

In some cases fiber links are not damaged directly (e.g. EMP attacks). Thus, an

idea that can be proposed is to consider a model where fibers are not affected directly

by an attack, but each fiber consists of several amplifiers which are probabilistically

distributed similarly as we described for vertices. Destroying an amplifier along the

fiber makes it unusable. In such cases, a link can be represented as a compound

component of finite number of nodes. Thus a link t can be represented by a set of

nodes (i.e. amplifiers) Vt = {t1, t2, ..., tk} where each node ti ∈ Vt is distributed within

the region C(ti) through gti() independently. Note that the geometry of the actual

fibers is not considered (e.g. the actual fiber-link can resemble a curve). As for the

single component, we can associate weight wt to the compound component t.

We say that a link t is destroyed if at least one node in Vt is affected by the attack

pr. Thus, the probability that t is affected by an attack pr is

f(t, pr) = 1−
∏

ti∈Vt

(1− fti(ti, pr)).
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A problem in applying directly the algorithm from previous section for this case is

that the description complexity of f may not be a constant, thus computing the super-

level-sets might be difficult. However, in [2] they provide a generalized algorithm which

allows compound components, their algorithm is based on applying the algorithm for

the single component case we described in the previous section, and thus, it can be

variated to use the modified algorithm we described in the previous section to solve

this case as well.

We note that in [2] the network is deterministic and thus computing the super-

level-sets for links is easier, giving the case where links are affected directly. In their

paper, the generalization of the algorithm to allow compound components was mainly

motivated for lightpaths investigation.

An interesting open problem rises in the model described in this chapter is if the

problem of finding a “worst-cut” with respect to links (where links are affected directly)

can be approximated by a FPTAS. If it is possible to develop a FPTAS, it seems that

additional techniques are required, as computing or approximating the super-level-sets

for the links seems to be difficult (a link is determined by its two endpoints which their

location is probabilistically distributed). Furthermore, super-level-sets of links with a

common endpoint are dependent, which might make the problem even harder.
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Chapter 6

Conclusions and Future Work

Conclusions Motivated by applications in the area of network robustness and sur-

vivability, we focused on the problem of geographically correlated network failures.

Namely, on assessing the impact of such failures to the network. While previous works

in this emerging field focused mainly on deterministic networks (as described in sec-

tion 1.2), we studied the problem under non-deterministic network models.

We proposed a method to stochastically model the geographical (physical) layout

of communication networks, i.e. the geographical locations of nodes and links, as

well as the capacity of the links. This applies to both the case where the network

is derived from a random model, or to the case where the physical topology of the

network is unknown (or partially known) to the attacker, who possesses some statistical

information (e.g., population density, topography, economy) about the geographical

area of the network, or the probability of having link between various locations.

Using tools from geometric probability and numerical analysis, we developed ap-

proximation algorithms for finding the damage caused by physical disasters (modeled

by circular cuts) at different points and to approximate the location and damage of the

worst-case cuts for this model. We also provided an algorithm to assess the impact of a

random circular disaster (i.e. non-targeted) to our random network model, motivated

51



by modeling a failure resulting from a natural disaster such as a hurricane or collateral

(non-targeted) damage in an EMP attack. We proved the correctness of our schemes

and mentioned the trade between running time and accuracy, for both additive and

multiplicative error terms.

In order to test the applicability of our model and algorithms to real-world scenar-

ios, we applied our algorithms to approximate the damage caused by cuts in different

locations to communications networks in the USA, where the network’s geographical

layout was modeled probabilistically, relying on demographic information (i.e. pop-

ulation density) only. We found a strong correlation between locations of cuts that

cause high relative damage to the population density distribution over the network’s

region. Some of the results agree with the exact results obtained before about the fiber

backbone of a major network provider in the USA and some do not (as described in

section 4.3). It is yet to be determined if taking into account more links would lead

to results closer to our scheme’s prediction or whether the results are fundamentally

different due to an inexact link model.

Our results imply that some information on the network sensitivity and vulnerabil-

ities can be deduced from the population alone, with no information on any physical

links and nodes. Thus, our schemes allows to examine how valuable is public infor-

mation (such as demographic, topographic and economic information) to an attacker’s

destruction assessment capabilities, and examine the affect of hiding the actual phys-

ical location of the fibers on the attack strategy. Thereby, the schemes can be used

as a tool for policy makers and engineers to design more robust networks by placing

links along paths that avoid areas of high damage cuts, or identifying locations which

require additional protection efforts (e.g., equipment shielding).

In chapter 5 we discussed about a different model than the one we studied in

chapters 2, 3, 4, presenting a different type of randomness, where nodes are not

distributed through a spatial Poisson point process, but the number of nodes is given
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and each node is distributed in a specific region. Additionally, the model in chapter 5

assumes randomness only on the locations of the nodes but the existence of a link

between two nodes and its capacity is given, and thereby assuming the attacker possess

partial but significant information on the geographical layout of the network. Although

our model from chapter 2 may be adapted to serve the goals of the model in chapter 5

by selecting the probability functions to resemble the model in chapter 5, we tackled

the problem as is. We give an approximation algorithm to find a worst-case cut with

respect to vertices for this model, based on few modifications on a recent algorithm by

Agarwal et al. which was originally proposed for the probabilistic failures model [2].

Future Work The discussion about finding vulnerable geographic locations to phys-

ical attacks naturally leads to the question of robust network design in the face of

geographical failures. Several questions are proposed, one is to investigate the effect of

adding minimal infrastructure (e.g., lighting-up dark fibers) on network resilience, and

determine how to use low-cost shielding for existing components to mitigate large-scale

physical attacks. Another question is on designing the network’s physical topology un-

der some demand constraints (e.g., nodes that should be located within a specific

region, capacity and flow demands) such that the damage by a large-scale physical

attack is minimized.

Another related research direction is to develop a framework for attack and defense

strategies for opponents having no knowledge of each other’s strategy. Using a game-

theoretic approach, study a two player zero sum game where one player (the defender)

attempts to design a network as resilient to physical attacks as possible under some

demand constraints, while the other player (the attacker) picks a location for the cut,

without having complete knowledge about the actual network’s physical structure.
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